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probably the first mammalian species bred specially for 
biological testing, given that a rat resembles the human 
body’s physiology (notably, rat and human neural net-
works are comparable) [2–4].

In our search for novel adenosine receptor ligands, our 
group determines a test compound’s binding affinities in 
vitro at rat adenosine A1 and A2A receptors – more spe-
cifically at male rat adenosine receptors. This is also the 
case with other researchers studying adenosine recep-
tors [5–7]; although, many do not state whether male or 
female rat brain membranes were used [8–12].

The rat is genetically well-characterized: In both 
humans and rats, the adenosine A1 receptor subtype con-
tains 326 amino acids and amino acid sequence homol-
ogy is 95%. The adenosine A2A receptor subtype is the 
largest subtype and contains 412 amino acids in humans 

Introduction
Since the discovery of receptor cloning and heterologous 
expression, novel compounds are evaluated at human 
receptors (the ultimate drug target); however, early in 
vivo studies are performed in rodents, generally Mus 
musculus (mice) and Rattus norvegicus (rats) which are 
common laboratory species [1, 2]. It is said that labo-
ratory rats were already in use by 1850 and are most 
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Abstract
Objective To ensure reproducibility in biomedical research, the biological variable sex must be reported; yet a reason 
for using male (instead of female) rodents is seldom given. In our search for novel adenosine receptor ligands, our 
research group routinely determines a test compound’s binding affinities at male Sprague-Dawley rat (r) adenosine 
A1 and A2A receptors via in vitro radioligand binding studies. This pilot study compared the binding affinities of four 
adenosine receptor ligands (frequently used as reference standards) at male and female adenosine rA1 and rA2A 
receptors.

Results The inhibition constant (Ki) values determined using female rats correspond well to the values obtained 
using male rats and no markable difference could be observed in affinity and selectivity of reference standards. For 
example, DPCPX the selective adenosine A1 receptor antagonist: male rA1Ki: 0.5 ± 0.1 nM versus female rA1Ki: 0.5 ± 0.03 
nM; male rA2AKi: 149 ± 23 nM versus female rA2AKi: 135 ± 29 nM. From the limited data at hand, we conclude that even 
when using female rats for in vitro studies without regard for the oestrous cycle, the obtained data did not vary much 
from their male counterparts.
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and 410 in rats with 82% amino acid sequence homology 
[1].

It is vital to account for sex as a biological variable to 
ensure reproducibility in biomedical research [13–15]; 
yet a reason for using male (instead of or in addition to 
female) rodents are seldom given. Indeed, most behav-
ioral studies using rodents use male rodents only, see-
ing as researchers fear that hormonal changes during 
the oestrous cycle cause greater variability [16] (as well 
as increased costs) [13, 17]. Beery (2018) found that the 
ratio of male to female test subjects was 5:1 in neurosci-
ence rodent studies [18]; furthermore, male-only studies 
seem to be increasing [19]. Seeing as only male rats are 
used, female rats are more often than not culled, though 
the justification for culling is controversial [20]. Female 
rodents are occasionally used because of ethical or eco-
nomic reasons [16].

Behavioral studies have reported that female rodents 
are not more variable than male rodents across diverse 
biological traits [21–23]. In a meta-analysis of neurosci-
ence studies, Becker et al. (2016) found that even when 
female rats are used in neuroscience experiments (with-
out regard for their oestrous cycle), their data is not less 
consistent than their male counterparts [13]. As stated, 
similar results have been obtained for gene expression in 
humans versus rats [24].

It must; however, be noted that brain structure and 
chemistry are subject to sex differences, and so are ade-
nosine and its receptors. For example, Yang et al. (2007) 
found that there are sex differences in the regulation of 
heart rate, body temperature, and locomotor activity 
caused by differences in adenosine A1 receptor expres-
sion [25]. Additionally, adenosine A1 and A2A receptors 
regulate the severity of learning deficits that accompany 
attention-deficit hyperactivity disorder, and those defi-
cits vary between the sexes [26]. Adenosine has also been 
implicated in differences in cocaine addiction between 
males and females, with an adenosine A2A recep-
tor antagonist having greater effects on motivation in 
females [27]. Both McIntosh et al. (2010) and Pierling et 
al. (2021) suggested that gonadal hormones, specifically 
oestrogen, modulate adenosine receptor gene expres-
sion, and thus, cause sex differences in adenosine recep-
tor function [28, 29]. Although little is known about the 
effect of sex as a biological variable on adenosine signal-
ing (since almost all research were performed on males), 
Borgus et al. (2019) found that the effects of sex and 
female oestrous cycle differences on the frequency and 
concentration of spontaneous adenosine release in male 
and female Sprague-Dawley rats are complex, and alas, 
not consistent from one brain region to the next [30].

Interestingly, neurological conditions such as Parkin-
son’s disease, depression, and dementia, among others 
(notably, adenosine receptors are associated with the 

potential treatment of these diseases), affect women and 
men differently; therefore, it is reasonable that rodent 
models of these diseases include both male and female 
subjects [13, 21].

In the drug discovery process, in vivo animal studies 
follow in vitro adenosine receptor affinity and selectivity 
determination (if a promising drug candidate is identi-
fied). Considering the latter, in vitro radioligand binding 
assays utilizing rat membranes expressing adenosine 
receptors are relevant. This pilot study aims to deter-
mine the in vitro binding affinities of four well-known 
adenosine receptor ligands (often used as reference stan-
dards) at rat adenosine A1 and A2A receptors using male 
and female rat whole brain (expressing A1) and striatal 
(expressing A2A) membranes. To the best of our knowl-
edge, we compare and document for the first time the 
variance in the in vitro binding affinity (inhibition con-
stant (Ki) values) of the reference standards at male and 
female rat adenosine A1 and A2A receptors. Based on 
these results, we may provide evidence for the use of 
both male and female rats for in vitro testing of adenosine 
receptor ligands.

Main text
Materials and methods
All reagents and solvents were commercially avail-
able. [3H]-8-cylcopentyl-1,3-dipropylxanthine 
([3H]DPCPX; specific activity 120 Ci/mmol) and 
5′-N-[3H]-ethylcarboxamideadenosine ([3H]NECA; spe-
cific activity 27.1 Ci/mmol), Filter count (liquid scintil-
lation cocktail) from PerkinElmer. Adenosine deaminase 
(5.9  mg protein/mL, 157 units/mg protein), N6-cyclo-
pentyladenosine (CPA), caffeine, 8-cyclopentyl-1,3-di-
propylxanthine (DPCPX) and istradefylline from 
Sigma-Aldrich. Whatman GF/B 25  mm diameter filters 
from Merck. Residual radioactivity was measured with a 
Packard Tri-CARB 2810 TR liquid scintillation counter.

Membrane preparation
The North-West University Animal Care, Health and 
Safety Research Ethics Committee (NWU-AnimCare) 
approved the study and subsequent collection of tissue 
samples from adult male and female Sprague-Dawley 
rats for radioligand binding studies (application num-
ber NWU-00035-10-A5). The research was performed 
in accordance with the guidelines of the South African 
National Standard (SANS) document (The care and use 
of animals for scientific purposes). Sprague-Dawley rats 
were sourced from the NWU Vivarium (six-week-old, 
(193 ± 11.94  g). Rats were housed in medium poly-car-
bonated cages (2 rats per cage, male and female rats were 
housed separately) in a well-ventilated room at a tem-
perature of 22 ± 2  °C and relative humidity of 50 ± 10% 
with a with 12 h light-dark cycle. Commercially available 
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rat chow and tap water were provided ad libitum. Upon 
euthanasia by decapitation, 20 male and 20 female 
Sprague-Dawley rats were dissected and 10 male and 10 
female whole brains (excluding brainstem and cerebel-
lum) or 10 male and 10 female striata were collected and 
pooled separately based on sex and whole brain or stri-
ata. (Please note that rats were not treated prior to eutha-
nasia.) Rat brain membranes were prepared and stored as 
described in literature [31]. The protein content of male 
and female rat whole brain and striatal membranes was 
determined using Bradford reagent and bovine serum 
albumin as reference standard [32].

Adenosine A1/A2A receptor radioligand binding assays
The A1 radioligand binding assay used either male or 
female rat whole brain membranes (expressing A1 recep-
tor) and [3H]DPCPX (selective A1 antagonist) as radio-
ligand [33] and, in turn, the A2A assay used rat striatal 
membranes (expressing A2A receptor) and [3H]NECA) 
(non-selective A1/A2A agonist) as radioligand [34]. Each 
incubation of the A1 assay consisted of: (i) test com-
pound (10 µL), (ii) 0.1 nM [3H]DPCPX (radioligand solu-
tion, 100 µL) and (iii) 120 µg rat whole brain membranes 
(based on protein content determined by Bradford 
protein assay) and 0.1 units/mL adenosine deaminase 
(membrane suspension, 890 µL) [31, 33]. Whereas, every 
incubation of the A2A assay consisted of: (i) 120  µg rat 

striatal membranes (based on protein content deter-
mined by Bradford protein assay), 0.2 units/mL adenos-
ine deaminase, 10 mM magnesium chloride (membrane 
suspension, 790 µL), (ii) test compound (10 µL), (iii) 50 
nM CPA (100 µL) and (iv) 4 nM [3H]NECA (radioligand 
solution, 100 µL) [31, 34]. The final volume of all incuba-
tions contained 1 mL of 50 mM Tris.HCl buffer (pH 7.7, 
25 °C) and 1% dimethylsulfoxide [31]. Non-specific bind-
ing of [3H]DPCPX and [3H]NECA for the A1 and A2A 
assay, respectively, was defined as binding in the presence 
of 100 µM CPA [31, 33, 34]. Specific binding was defined 
as the total binding minus the non-specific binding [31].

Data analysis
Data analysis was done using Microsoft Excel and Graph-
Pad Prism Software. Sigmoidal dose response curves, 
from which half maximal inhibitory concentration (IC50) 
values were calculated, were obtained by plotting the 
specific binding against the logarithm of the test com-
pounds′ concentrations. Subsequently, the IC50 values 
were used to calculate the inhibition constant (Ki) values 
for the competitive inhibition of [3H]DPCPX (dissocia-
tion constant (Kd) = 0.36 nM) [33] against rat whole brain 
membranes and [3H]NECA (Kd = 15.3 nM) [34] against 
rat striatal membranes by the test compounds using the 
Cheng-Prusoff equation [35]. Descriptive statistics were 
used to present Ki values (nM) as the mean ± standard 

Table 1 Ki values (nM) of reference standards at male and female rat adenosine A1 and A2A receptors
Reference standard Ki value ± SEM (nM)a Selectivity index

Male rA1vs. 0.1 nM 
[3H]DPCPX

Female rA1vs. 
0.1 nM [3H]DPCPX

Male rA2Avs. 4 nM 
[3H]NECA

Female rA2Avs. 
4 nM [3H]NECA

Male 
rA2AKi/rA1Ki

Female 
rA2AKi/rA1Ki

CPA 6.5 ± 0.4a

5 [36]
6 [37, 38]
7 [39]
8 [40]
10 [41, 42]
15 [43]

6.4 ± 0.7a 858 ± 155a

163 [39]
331 [43]
400 [38]
557 [36]

852 ± 175a 132 133

Caffeine 52 800 ± 7 400a

18 800 [44]
26 000 [45]
41 000 [10]
43 900 [46]
55 000 [47]

38 000 ± 5 220a 18 637 ± 4 331a

22 000 [45]
32 500 [44]
43 000 [10]

21 947 ± 5 143a 0.4 0.6

DPCPX 0.5 ± 0.1a

0.4 [48]
0.5 [43, 49]

0.5 ± 0.03a 149 ± 23a

157 [44]
340 [51]
530 [43]
545 [39]

135 ± 29a 298 270

Istradefylline 125 ± 6a

150 [50]
192 [38]
230 [44]

169 ± 10a 3.3 ± 0.9a

1 [38]
2 [50, 52]
5 [44]
8 [46]
11 [41]

2.4 ± 0.4a 0.03 0.01

aInhibition constant (Ki, nM) value is presented as the mean ± standard error of the mean (SEM), radioligand binding assays performed in triplicate. Values without 
SEM are taken from the literature [10, 36–52]
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error of the mean (SEM), based on radioligand binding 
assays performed in triplicate. The pKi values of reference 
compounds at male and female adenosine A1 and A2A 
receptors were also compared, and a correlation coeffi-
cient was calculated. The R squared of the linear regres-
sion analysis is equal to the correlation coefficient.

Results and discussion
Four adenosine receptor ligands frequently used as refer-
ence standards were investigated in vitro at rat adenosine 
A1 and A2A receptor subtypes in male or female Sprague-
Dawley rats’ whole brains (expressing A1) or striata 
(expressing A2A) using previously reported radioligand 
binding assays. The four reference standards include 
CPA, caffeine, DPCPX, and istradefylline. Before con-
ducting the experiments, a literature search for Ki values 
was performed: the Ki values of the reference standards 
have been repeatedly determined at male rat adenosine 
receptors; however, no study reports using female rats (if 
the sex is at all reported).

Table 1 summarized the literature Ki values (male) and 
newly determined values using female rat whole brain 

(expressing A1) and striatal (expressing A2A) membranes, 
respectively. The Ki values determined using female rats 
correspond well to the values obtained using male rats. 
No markable difference could be observed in the affinity 
and selectivity (see selectivity index Table 1) of CPA, caf-
feine, DPCPX and istradefylline for the adenosine A1 and 
A2A receptors.

The pKi values of reference compounds at male and 
female adenosine A1 and A2A receptors were also com-
pared, and a correlation coefficient was calculated. The R 
squared of the linear regression analysis is equal to the 
correlation coefficient (Fig. 1). It was found that male and 
female showed good correlation; with R squared values 
above 0.99 (i.e. >99%).

Additionally, the protein content of male and female 
rat whole brain and striatal membranes were almost 
identical as determined by a Bradford protein assay. Pro-
tein content male rA1: 6.91 mg/mL & rA2A: 6.93 mg/mL; 
female rA1: 6.13 mg/mL & rA2A: 6.81 mg/mL.

Fig. 1 Correlation of pKi values at male and female rat adenosine A1 (A) and A2A (B) receptors
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Conclusion
From the limited data at hand, we conclude that even 
when female rats are used for in vitro (and not necessar-
ily in vivo) studies without regard for the oestrous cycle, 
the obtained data is not more variable than that of their 
male counterparts. Indeed, the use of both male and 
female rats would be more ethical (by reducing the num-
ber of female Sprague-Dawley rats culled, in line with the 
3 Rs: Replacement, Reduction and Refinement) as well 
as economical; furthermore, inclusion of both sexes in 
basic and preclinical research could lead to significant 
discoveries.

Limitations
Although previous in vivo studies and the present in vitro 
study reported that female rodents are not more variable 
than male rodents across diverse biological traits, under-
standing sex differences and the influence of the female 
oestrous cycle is important for the design of effective 
treatments manipulating adenosine and its receptors. It 
must be noted that more standard adenosine receptor 
ligands should be compared to corroborate our findings, 
seeing as this pilot study merely presented the possibility 
of using female rat brain membranes for in vitro studies.
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