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Abstract 

Objective  The paper is focused on developing and analyzing a uniformly convergent numerical scheme for a 
singularly perturbed reaction-diffusion problem with a negative shift. The solution of such problem exhibits strong 
boundary layers at the two ends of the domain due to the influence of the perturbation parameter, and the term 
with negative shift causes interior layer. The rapidly changing behavior of the solution in the layers brings significant 
difficulties in solving the problem analytically. We have treated the problem by proposing a numerical scheme using 
the implicit Euler method in the temporal direction and a fitted tension spline method in the spatial direction with 
uniform meshes.

Result  Stability and uniform error estimates are investigated for the developed numerical scheme. The theoretical 
finding is demonstrated by numerical examples. It is obtained that the developed numerical scheme is uniformly con-
vergent of order one in time and order two in space.
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Introduction
In various areas of science and engineering, one may 
assume that a certain system is governed by a principal 
cause, which means that the current state is not depend-
ent on the previous state and determined solely by the 
present one. However, under closer observation, a prin-
cipal cause is usually an approximation to the real situ-
ation and more existent models involve some of the past 
states of the system. Such systems are governed by delay 
differential equations. Delay differential equations have 
recently gained popularity in a variety of fields of study, 

such as biology, engineering, robotics, and others with 
different goals and expectations [1].

A singularly perturbed delay reaction-diffusion prob-
lem is a differential equation in which the diffusive term 
is dominated by the reaction term due to the small posi-
tive parameter ε and involves one or more shifting argu-
ments. Such problems arise frequently in the modeling 
of different physical phenomena. For instance, models in 
Bio-mathematics [2], problems in optimal control the-
ory [3], neural dynamics and signal transmission [4] and 
models in the electro-optic bistable devices [5] are some 
applications modeled using singularly perturbed delay 
differential equations.

Due to the presence of ε as a coefficient of the highest 
order derivative term, the solution of a singularly per-
turbed delay differential equation varies abruptly involv-
ing two boundary layers. The term with large delay gives 
rise to interior layer. The abruptly changing behaviors 
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of the solution in the layers make it difficult to solve the 
problem analytically.

Standard numerical methods are unfit to provide 
acceptable approximations to the solution of singu-
larly perturbed problems due to the presence of layers. 
So, there is a need of developing uniformly convergent 
numerical methods to treat such type of problems.

Various research works are available in the literature 
to address the aforementioned limitations. For instance, 
Duressa [6] constructed a numerical method for sin-
gularly perturbed differential equation involving small 
delay by introducing a fitting parameter applying the 
finite difference approximation. Woldaregay and Duressa 
[7] developed a hybrid finite difference method on uni-
form meshes for singularly perturbed problem with 
delay. Chakravarthy et al. [8] treated a singular perturba-
tion problem with delay by formulating a scheme using 
cubic spline in compression on a uniform mesh. Daba 
and Duressa [9] solved singularly perturbed problems by 
formulating a hybrid numerical scheme on a piece-wise 
uniform spatial meshes. Bansal and Sharma [10] solved 
singularly perturbed problems involving large delay by 
formulating a numerical method applying implicit Euler 
method in time variable and central difference method in 
space variable with piece-wise uniform meshes. Kumar 
and Kumari [11] developed numerical schemes for sin-
gularly perturbed parabolic reaction-diffusion problem 
with delay based on the Crank-Nicolson method for the 
time variable and the central difference approach for the 
spatial variable with a non-uniform meshes. Ejere et  al. 
[12] proposed a fitted mesh numerical scheme for a sin-
gularly perturbed parabolic reaction-diffusion problem 
with large delay using the weighted average method in 
the time variable and central difference method in the 
spatial variable, and obtained that the method is uni-
formly convergent.

Motivated by the various papers mentioned above, we 
treated a time dependent singularly perturbed parabolic 
differential equation with delay in the spatial variable. We 
handled the influence of the perturbation parameter and 

are investigated and proved. The validity of the theoreti-
cal findings is demonstrated by carrying out numerical 
experiments. Based on the theoretical and numerical 
results, we found that the proposed scheme is uniformly 
convergent.

The remainder of this paper is organized in the fol-
lowing order: In Sect.  "Continuous problem", we pre-
sent the statement of the problem. Section "Numerical 
Method" deals with the detail numerical description 
and methods. We present numerical results and 
discussions to illustrate the theoretical results in 
Sect.  "Numerical experiments, results and discus-
sions". We give the conclusion of this research work in 
Sect. "Conclusion".

Notation: Throughout this paper, we denote C as a 
generic constant  independent of the perturbation 
parameter and the mesh numbers, which may take dif-
ferent values in different inequalities or equations. For 
a given function υ on a domain � , the maximum norm 
is defined as �υ� = max

(x,t)∈�̄
|υ(x, t)|.

Continuous problem
We consider the following singularly perturbed delay 
differential equation on � = �x ×�t = [0, 2] × [0,T ].

where 0 < ε ≪ 1 , �L = {(x, t) : x ∈ [−1, 0]; t ∈ [0,T ]} 
and �R = {(2, t) : t ∈ [0,T ]} for finite time T. The func-
tions l(x), m(x), g(x, t), u0(x) , α(x, t) and β(t) are assumed 
to be sufficiently smooth, bounded and independent of ε . 
Moreover, for arbitrary positive constant µ , we assumed 
that

Considering the interval boundary conditions, Eq. (1) can 
be equivalently written as

subject to

(1)















∂u(x,t)
∂t − ε

∂2u(x,t)
∂x2

+ l(x)u(x, t)+m(x)u(x − 1, t) = g(x, t),

u(x, 0) = u0(x), x ∈ [0, 2],
u(x, t) = α(x, t), (x, t) ∈ �L,
u(2, t) = β(t), (2, t) ∈ �R,

(2)l(x)+m(x) ≥ 2µ > 0 and m(x) < 0, x ∈ �̄x.

(3)Lεu(x, t) =



















∂u(x,t)
∂t − ε

∂2u(x,t)
∂x2

+ l(x)u(x, t) = g(x, t)−m(x)α(x − 1, t),

(x, t) ∈ (0, 1] × (0,T ],
∂u(x,t)

∂t − ε
∂2u(x,t)
∂x2

+ l(x)u(x, t)+m(x)u(x − 1, t) = g(x, t),

(x, t) ∈ (1, 2)× (0,T ]

(4)







u(x, 0) = u0(x), ∀x ∈ �̄x,
u(x, t) = α(x, t), (x, t) ∈ �L,
u(2, t) = β(t), (2, t) ∈ �R.

the large negative shift by developing a numerical scheme 
based on the implicit Euler method in the time direction 
and a fitted tension spline method in the spatial direc-
tion on uniform meshes. The stability estimate and the 
uniform convergence of the proposed numerical scheme 
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If we set ε = 0 in the continuous problem, then the 
reduced problem is given as

with the conditions

From the reduced form in Eq. (5), we observed that 
u0(x, t) needs not necessarily satisfy the conditions

and hence, the solution u(x,  t) involves two bound-
ary layers at the ends of [0,  2] and interfacing layers at 
x = 1 [13]. Moreover, the initial and boundary data are 
assumed to satisfy Holder continuity and we impose the 
compatibility conditions as

(5)

Lεu0(x, t) =































∂u0(x,t)
∂t + l(x)u0(x, t) = g(x, t)−m(x)α(x − 1, t),

(x, t) ∈ (0, 1] × (0,T ],
∂u0(x,t)

∂t + l(x)u0(x, t)+m(x)u0(x − 1, t) = g(x, t),

(x, t) ∈ (1, 2)× (0,T ]

(6)







u0(x, 0) = u0(x), x ∈ �̄x,
u0(x, t) = α(x, t), (x, t) ∈ �L,
u0(2, t) = β(t), (2, t) ∈ �R.

u0(0, t) = α(0, t), u0(2, t) = β(t), u0(1
+, t) = u0(1

−, t)

and (u0)x(1
+, t) = (u0)x(1

−, t)

Proof  From Eq. (9), it follows that |u(x, t)| − |u0(x)| ≤ Ct , 
which implies that

Since u0(x) is bounded, fixing t in (0,  T], we obtain 
|u(x, t)| ≤ C , (x, t) ∈ �̄� �.

Lemma 2.2  (Maximum principle). Let z(x,  t) be a 
continuous function in �̄ . If z(x, t) ≥ 0 , (x, t) ∈ ∂� and 
Lεz(x, t) ≥ 0 , (x, t) ∈ � , then z(x, t) ≥ 0 , (x, t) ∈ �̄.

Proof  Let (x̂, t̂) ∈ �̄ and z(x̂, t̂) = min�̄ z(x, t) . Assume 
that z(x̂, t̂) < 0 . By the considered hypothesis, (x̂, t̂) /∈ ∂� 
and by the extreme value theorem, we have zx(x̂, t̂) = 0 , 
zxx(x̂, t̂) ≥ 0.

Case 1: For 0 < x̂ ≤ 1 , we have

Case 2: For 1 < x̂ ≤ 2 , we have

The two cases contradict the hypothesis, so that 
our assumption fails and z(x̂, t̂) ≥ 0 , which implies 
z(x, t) ≥ 0 , (x, t) ∈ �̄� �.

Lemma 2.3  (Stability estimate). The solu-
tion of the continuous problem (1) is estimated as 
|u(x, t)| ≤ µ−1�g� +max {|α(x, t)|, |β(2, t)|}.

Proof  Let’s define barrier functions as

Then, we have π±(0, t) ≥ 0 and π±(2, t) ≥ 0.

For x ∈ (0, 1] , we get

For x ∈ (1, 2) , we obtain

|u(x, t)| ≤ Ct + |u0(x)|, (x, t) ∈ �̄.

Lε,1z(x̂, t̂) = zt − εzxx + l(x̂)z(x̂, t̂) = −εzxx(x̂, t̂)+ l(x̂)z(x̂, t̂) < 0.

Lε,2z(x̂, t̂) = zt − εzxx + l(x̂)z(x̂, t̂)+m(x̂)z(x̂ − 1, t̂)

= zt − εzxx +
[

l(x̂)+m(x̂)
]

z(x̂, t̂)+m(x̂)
[

z(x̂ − 1, x̂)− z(x̂, t̂)
]

= −εzxx(x̂, t̂)+
[

l(x̂)+m(x̂)
]

z(x̂, t̂)+m(x̂)
[

z(x̂ − 1, t̂)− z(x̂, t̂)
]

< 0.

π±(x, t) = µ−1�g� +max {|α(x, t)|, |β(2, t)|} ± u(x, t).

Lε,1π
± =π±

t − επ±
xx + l(x)π±(x, t)

≥ l(x)max {|α(0, t)|, |β(2, t)|} ≥ 0

By the above assumptions, it is possible to obtain a 
unique solution for the considered continuous problem. 
And by the approaches in [14, 15], we can obtain that

The solution to Eq. (1) approaches to u0(x, t) for small 
values of ε . As it is described in [16], we assumed that all 
the considered data values in Eq. (1) are identically zero, 
so that the following properties hold.

Lemma 2.1  The solution u(x, t) of the continuous prob-
lem (1) is bounded as |u(x, t)| ≤ C , (x, t) ∈ �̄.

(7)
{

u0(0, 0) = α(0, 0),
u0(2, 0) = β(2, 0),

(8)

{

∂α(0,0)
∂t − ε

∂2u0(0,0)
∂x2

+ l(0)u0(0, 0) = g(0, 0)−m(0)α(−1.0),
∂β(2,0)

∂t − ε
∂2u0(2,0)

∂x2
+ l(2)u0(2, 0)+m(2)u0(1, 0) = g(2, 0).

(9)|u(x, t)− u0(x)| ≤ Ct, (x, t) ∈ �̄.
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Therefore, by Lemma  2.2, the stability estimate holds 
true. � �

Lemma 2.4  Assuming that Lemmas  2.1 and  2.2 hold 
true. Then the derivatives of the solution u(x,  t) with 
respect to t can be bounded as

Proof  For j = 0 , it implies Lemma  2.1. Let j = 1 . Then 
on �̄ , we have u = 0 along the sides x = 0 and x = 2 , 
which implies that ut = 0 . On the side t = 0 , we have 
u = 0 , and hence uxx = 0 . From Eq. (3), we have 

 For x ∈ (0, 1] , u(x − 1, 0) = α(x − 1, 0) = 0 and for 
x ∈ (1, 2) , we obtain that u(x − 1, 0) = u0(x − 1, 0) = 0 . 
Combining these gives u(x − 1, 0) = 0 . Then by Eq. (10), 
we obtain ut(x, 0) = g(x, 0) . Since g is smooth func-
tion, it implies that |ut | ≤ C for sufficiently large C on 
∂� . Applying the differential operator Lε on ut(x, t) , 
we obtain Lεut(x, t) = gt(x, t) , which implies that 
|Lεut(x, t)| = |gt(x, t)| ≤ C on �̄ . Thus, application of 
Lemma 2.2 gives

By a similar procedure, for j = 2 we have utt = 0 on the 
sides x = 0 and x = 2 , and uxx = 0 on the side t = 0 . Dif-
ferentiating Eq. (3) with respect to t, we get 

 Since ut(x, 0) = g(x, 0) , we have uxxt(x, 0) = gxx(x, 0) . 
And u(x − 1, 0) = 0 , implies ut(x, 0) = 0 . Using these 
results in Eq. (11) yields

Lε,2π
± =π±

t − επ±
xx + l(x)π±(x, t)+m(x)π±(x − 1, t)

≥2µmax {|α(0, t)|, |β(2, t)|} ≥ 0

∣

∣

∣

∣

∂ ju(x, t)

∂tj

∣

∣

∣

∣

≤ C , (x, t) ∈ �̄, j = 0, 1, 2.

(10a)
ut(x, 0)− εuxx(x, 0)+ l(x)u(x, 0)

= g(x, 0)−m(x)α(x − 1, 0), x ∈ (0, 1],

(10b)

ut(x, 0)− εuxx(x, 0)+ l(x)u(x, 0)+m(x)u(x − 1, 0)

= g(x, 0), x ∈ (1, 2).

|ut(x, t)| ≤ C on �̄

(11a)
utt(x, 0)− εuxxt(x, 0)+ l(x)ut(x, 0)

= gt(x, 0)−m(x)αt(x − 1, 0), x ∈ (0, 1],

(11b)

utt(x, 0)− εuxxt(x, 0)+ l(x)ut(x, 0)+m(x)ut(x − 1, 0)

= gt(x, 0), x ∈ (1, 2).

Since g is smooth function, we have |utt | ≤ C along the 
x-axis, which implies that |utt | ≤ C on ∂� . Applying the 
differential operator on utt , we get |Lεutt(x, t)| ≤ C on 
∂� . Thus, applying Lemma 2.2 gives

which completes the required proof. � �

Lemma 2.5  The derivatives of the solution u(x,  t) with 
respect to x can be bounded as

where δ1(x) = exp(−
√

µ
ε
x)+ exp(−

√

µ
ε
(1− x)) and δ2(x) = 

exp(−
√

µ
ε
(x − 1))+ exp(−

√

µ
ε
(2− x)) for k = 0, 1, 2, 3.

Proof  Consider for x ∈ [0, 1]. For k = 0 , we obtain 
Lemma 2.1. For k = 1 , fix t ∈ [0,T ] and consider a neigh-
borhood of the form I = (a, a+√

ε) , ∀x ∈ I . Then, 
applying the Mean Value Theorem for some y ∈ Ī , we get

Now, for any x in Ī , we have

Using Eq. (1) into Eq. (14) yields

Using Eq. (13) into Eq. (15) gives |ux(x, t)| ≤ Cε
−1
2  . Since 

δ1(x) is bounded, we have

(12)utt(x, 0) = gt(x, 0)+ εgxxt(x, 0)− l(x)g(x, t).

|utt(x, t)| ≤ C on �̄,

∣

∣

∣

∣

∣

∂ku(x, t)

∂xk

∣

∣

∣

∣

∣

≤
{

C(1+ ε−k/2δ1(x)), 0 ≤ x ≤ 1, 0 < t ≤ T ,

C(1+ ε−k/2δ2(x)), 1 < x ≤ 2, 0 < t ≤ T ,

(13)
|ux(y, t)| = ε−

1
2 |u(a+

√
ε, t)− u(a, t)| ≤ 2ε

−1
2 �u�.

(14)
|ux(x, t)| = |ux(y, t)+ ux(x, t)− ux(y, t)|

= |ux(y, t)+
∫ x

y
uxx(s, t)ds|.

(15)

|ux(x, t)| = |ux(y, t)+
1

ε

∫ x

y
(ut(s, t)+ l(s)u(s, t)

+m(s)u(s − 1, t)− g(s, t))ds|
≤ |ux(y, t)| + Cε−1, by Lemma 2.4.

∣

∣

∣

∣

∂u(x, t)

∂x

∣

∣

∣

∣

≤ C(1+ ε−1/2δ1(x)), 0 ≤ x ≤ 1, 0 < t ≤ T .
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Similar procedure holds for x ∈ [1, 2] . Using Eq. (1) and 
the bounds on u(x,  t) and ux(x, t) , the bounds for k = 2 
and k = 3 can be easily obtained. � �

Lemma 2.6 

where δ1(x) = exp(−
√

µ
ε
x)+ exp(−

√

µ
ε
(1− x)) and 

δ2(x) = exp(−
√

µ
ε
(x − 1))+ exp(−

√

µ
ε
(2− x)).

Proof  We use the approaches in [17, 18]. � �

Lemma 2.7 

where δ1(x) = exp(−
√

µ
ε
x)+ exp(−

√

µ
ε
(1− x)) and 

δ2(x) = exp(−
√

µ
ε
(x − 1))+ exp(−

√

µ
ε
(2− x)).

Proof  We refer the procedures in the proof of Lemma 10 
of [19]. � �

Numerical method
Semi‑discretization in the temporal direction
Let’s divide (0,  T] into equally spaced inter-
vals and form a uniform temporal mesh as 
�M

t = {tj = j�t, j = 0, 1, . . . ,M, T = M�t} . Then, 
using implicit Euler method on time derivative, we obtain 
the semi-discrete scheme as

where

∣

∣

∣

∣

∂2u(x, t)

∂x∂t

∣

∣

∣

∣

≤
{

C(1+ ε−1/2δ1(x)), 0 ≤ x ≤ 1, 0 < t ≤ T ,

C(1+ ε−1/2δ2(x)), 1 < x ≤ 2, 0 < t ≤ T ,

∣

∣

∣

∣

∂3u(x, t)

∂x2∂t

∣

∣

∣

∣

≤
{

C(1+ ε−1δ1(x)), 0 ≤ x ≤ 1, 0 < t ≤ T ,

C(1+ ε−1δ2(x)), 1 < x ≤ 2, 0 < t ≤ T ,

(16)LMε uj+1(x) = ϑ(x, tj+1),

LMε uj+1(x) =
{

−ε�tu
j+1
xx + p(x)uj+1(x), x ∈ (0, 1],

−ε�tu
j+1
xx + p(x)uj+1(x)+ q(x)uj+1(x − 1), x ∈ (1, 2)

and

subject to uj+1(x) = u0(x), x ∈ �̄x , uj+1(x) = α(x, tj+1),

(x, tj+1) ∈ �L , uj+1(2) = β(2, tj+1), (2, tj+1) ∈ �R , and 
for p(x) = 1+�tl(x) and q(x) = �tm(x).

Lemma 3.1  Let ψ j+1(x) be a continuous function on �̄x . 
If ψ j+1(0) ≥ 0 , ψ j+1(2) ≥ 0 and Lεψ j+1(x) ≥ 0 , x ∈ �x , 
then ψ j+1(x) ≥ 0 , x ∈ �̄x.

Proof  Let ν ∈ [0, 2] and ψ j+1(ν) = min�̄x
ψ j+1(x) and 

assume that ψ j+1(ν) < 0 . From the given conditions, we 
have ν /∈ ∂�x and ψ j+1

x (ν) = 0 , ψ j+1
xx (ν) ≥ 0.

Case 1: For ν ∈ (0, 1] , we have

Case 2: For ν ∈ (1, 2) , we have

By the two cases, the given condition is contradicted, 
which implies that our assumption is not holds and hence 
ψ j+1(x) ≥ 0 , x ∈ �̄x . Thus, the maximum principle is sat-
isfied by LMε,x , and we have

which is used in estimating the truncation error of the 
semi-discrete scheme.�  �

Lemma 3.2  The solution uj+1(x) of the semi-discrete 
problem (16) can be estimated as

ϑ(x, tj+1) =
{

�tg(x, tj+1)+ uj(x)− q(x)α(x − 1, tj+1), x ∈ (0, 1],
�tg(x, tj+1)+ uj(x), x ∈ (1, 2)

LMε,1ψ
j+1(ν) = −εψ

j+1
xx (ν)+ p(x)ψ j+1(ν) < 0.

LMε,2ψ
j+1(ν) = −εψ

j+1
xx (ν)+ p(x)ψ j+1(ν)+ q(ν)ψ j+1(ν − 1)

≤ −εψ
j+1
xx (ν)+ (p(ν)+ q(ν))ψ j+1(ν) < 0.

(17)
∥

∥

∥

(

LMε,x
)−1

∥

∥

∥
≤ (1+ µ�t)−1,
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Proof  Let us define barrier functions as

Then, we have π j+1
± (0) ≥ 0 and π j+1

± (2) ≥ 0.

For x ∈ (0, 1] , we have

For x ∈ (1, 2) , we have

Thus, we obtained that LMε π
j+1
± (x) ≥ 0 for all x ∈ [0, 2] . 

Hence, by the semi-discrete maximum principle, the 
required estimation of uj+1(x) is attained. � �

|uj+1(x)| ≤ �ϑ�
1+ µ�t

+max
{

|uj+1(0)|, |uj+1(2)|
}

, ∀x ∈ �̄x

π
j+1

± (x) = �ϑ�
1+ µ�t

+max

{

|uj+1(0)|, |uj+1(2)|
}

± uj+1(x).

LMε,1π
j+1

± (x) = −ε(π±)
j+1
xx + p(x)π

j+1

± (x)

= ±ϑ j+1(x)+ p(x)
�ϑ�

1+ µ�t

+ p(x)max

{

|uj+1(0)|, |uj+1(2)|
}

≥ µ

(

max

{

|uj+1(0)|, |uj+1(2)|
})

≥ 0.

LMε,2π
j+1

± (x) = −ε(π±)
j+1
xx + p(x)π

j+1

± (x)+ q(x)π
j+1

± (x − 1)

= ±ϑ j+1(x)+ [p(x)+ q(x)] �ϑ�
1+ µ�t

+ [p(x)

+ q(x)]max

{

|uj+1(0)|, |uj+1(2)|
}

≥ µ

(

max

{

|uj+1(0)|, |uj+1(2)|
})

≥ 0

At the (j + 1)th level, we can define the local trunca-
tion error ej+1 as the difference between the exact solution 
u(x, tj+1) and the approximate solution uj+1(x) of Eq. (16) 
and the global error estimate Ej+1 as the contribution of 
local truncation error up to the (j + 1)th time level.

Lemma 3.3  (Local truncation error estimate). Sup-
pose that 

∣

∣u(k)(x, t)
∣

∣ ≤ C , (x, t) ∈ �̄ , k = 0, 1, 2 . Then at 
the (j + 1)th time level, local truncation error is given as 
�ej+1� ≤ C(�t)2.

Proof  We refer Lemma 6 of [20].�  �

Lemma 3.4  (Estimation of the global error). Suppose 
that Lemma 3.3 holds. Then the global truncation error is 
estimated as �Ej+1� ≤ C(�t),  j=0(1)M.

Proof  Considering the local truncation error in 
Lemma 3.3 up to the (j + 1)th time level, we have

Thus, the semi-discrete scheme is convergent of order 
one in time.�  �

Lemma 3.5  The derivatives of the solution 
uj+1(x), j + 1 = 1(1)M of (16) can be bounded as

�Ej+1� =
∥

∥

∥

∥

j
∑

ι=1

eι
∥

∥

∥

∥

, j ≤ T/�t

= �e1 + e2 + ...+ ej� ≤ �e1�
+ �e2� + ...+ �ej� ≤ C(�t), j = 0(1)M.

�

�

�

�

�

dkuj+1(x)

dxk

�

�

�

�

�

≤























C
�

1+ ε−k/2
�

exp(−
�

µ
ε
x)+ exp(−

�

µ
ε
(1− x))

��

,

x ∈ �̄x, k = 0(1)4,

C
�

1+ ε−k/2
�

exp(−
�

µ
ε
(x − 1))+ exp(−

�

µ
ε
(2− x))

��

,

x ∈ �̄x, k = 0(1)4.
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Proof  See [21].�  �

Spatial discretization
Suppose the domain [0,  2] be subdivided into N equal 
intervals of step size h and form a uniform mesh as 

�N
x = {0 = x0, x1, . . . , xN/2 = 1, xN/2+1, . . . , xN = 2,

xi = ih, i = 0(1)N , h = 2/N }

.

Description and derivation of the tension spline method
On a uniform mesh �N

x  , a function S(x, τ ) of class 
C2[0, 2] that interpolates u(x) at xi depends on the com-
pression parameter τ and reduced to a cubic spline on 
the interval [0,  2] for τ approaching to zero is known 
as parametric cubic spline function [22]. In any inter-
val [xi, xi+1] ⊂ [0, 2] , the spline function S(x, τ ) = S(x) , 
which satisfies the linear second order differential 
equation

where S(xi, tj+1) = u
j+1
i  for τ > 0 is called cubic spline in 

compression. Solving the homogeneous part of Eq. (18) 
and setting 

√
τ = �

h gives

where A and B are arbitrary constants. For the non-
homogeneous part, let

(18)

Sxx(x, tj+1)− τS(x, tj+1)

= [Sxx(xi, tj+1)− τS(xi, tj+1)]
(

xi+1 − x

h

)

+ [Sxx(xi+1, tj+1 − τS(xi+1, tj+1)]
(

x − xi

h

)

,

(19)

S1(x, tj+1) = A exp

(

�

h
(x − xi)

)

+ B exp

(

�

h
(xi+1 − x)

)

,

Substituting in Eq. (18) and simplifying gives k = −1/τ , 
so that

where Mi = Sxx(xi, tj+1) and Mi+1 = Sxx(xi+1, tj+1) . 
From (19) and (20) we get

The values of the constants A and B can be determined 
by the interpolation conditions. That is, in [xi, xi+1] from 
Eq. (21), we obtain

and

From Eqs. (22) and (23), we can obtain that 
A = h2

2�2 sinh(�)
[Mi+1 − e�Mi] and 

B = h2

2�2 sinh(�)
[Mi − e�Mi+1] . Thus, Eq. (21) becomes

S2(x, tj+1) = k
[

Sxx(xi, tj+1)− τS(xi, tj+1)
]

(

xi+1 − x

h

)

+k
[

Sxx(xi+1, tj+1)− τS(xi+1, tj+1)
]

(

x − xi

h

)

.

(20)

S2(x, tj+1) = −
(

h

�

)2
[

Mi −
(

�

h

)2

u
j+1
i

]

(

xi+1 − x

h

)

−
(

h

�

)2
[

Mi+1 −
(

�

h

)2

u
j+1
i+1

]

(

x − xi

h

)

,

(21)

S(x, tj+1) = A exp

(

�

h
(x − xi)

)

+ B exp

(

�

h
(xi+1 − x)

)

−
(

h

�

)2

[Mi −
(

�

h

)2

u
j+1
i ]

(

xi+1 − x

h

)

−
(

h

�

)2

[Mi+1 −
(

�

h

)2

u
j+1
i+1]

(

x − xi

h

)

.

(22)

S(xi, tj+1) = A+ B exp(�)−
(

h

�

)2
[

Mi −
(

�

h

)2

u
j+1
i

]

(23)

S(xi+1, tj+1) = A exp(�)+ B−
(

h

�

)2
[

Mi+1 −
(

�

h

)2

u
j+1

i+1

]

.

(24)
S(x, tj+1) =

h2

2�2 sinh(�)

[

Mi+1 sinh

(

�(x − xi)

h

)

+Mi sinh

(

�(xi+1 − x)

h

)]

−
[

h

�2
Mi −

1

h
u
j+1
i

]

(xi+1 − x)−
[

h

�2
Mi+1 −

1

h
u
j+1
i+1

]

(x − xi),
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which is the cubic spline in compression on [xi, xi+1] , 
where Mi = Sxx(xi, tj+1) . The derivative of Eq. (24) at 
(x+i , tj+1) is

Similarly for x ∈ [xi−1, xi] , we obtain

From Eqs. (25) and (26) at the mesh point xi , we obtain

where �1 = 1
�2

(

1− �

sinh(�)

)

 and �2 = 1
�2
(� coth(�)− 1) . 

The consistency condition in Eq. (27) is a guarantee for 
the continuity of the first derivative of the spline function 
at the interior points. From the time semi-discrete prob-
lem (16), we have 

 where pi = 1+�tli and qi = �tmi . Inserting Eq. (28) 
into Eq. (27) and rearranging yields

(25)

Sx(x
+
i , tj+1) =

ui+1
j+1

− u
j+1

i

h
− hMi+1

�2

(

1− �

sinh(�)

)

− hMi

�2
(� coth(�)− 1).

(26)

Sx(x
−
i , tj+1) =

u
j+1

i − u
j+1

i−1

h
+ hMi(� coth(�)− 1)

�2

+ hMi−1

�2

(

1− �

sinh(�)

)

.

(27)
h2(�1Mi−1 + 2�2Mi + �1Mi+1) = u

j+1
i−1 − 2u

j+1
i + u

j+1
i+1,

(28a)ε�tMi = piu
j+1
i + qiu

j+1
i−N/2 −�tg

j+1
i − u

j
i,

(28b)
ε�tMi±1 = pi±1u

j+1
i±1 + qi±1u

j+1
i±1−N/2 −�tg

j+1
i − u

j
i±1,

Exponential fitting factor
To control the influence of ε in the region of the layers, 
we introduce an exponential fitting factor. By analogous 
procedures in [23], the analytical solution of Eq. (16) is 
written as

where the arbitrary constants η1 and η2 are deter-
mined using the conditions uj+1(xi±1) = u

j+1
i±1 and 

uj+1(xi) = u
j+1
i  as

Then, introducing a fitting factor σ on (0, 1], we obtain

(29)

(−ε�t + �1h
2pi−1)u

j+1
i−1 + (2ε�t + 2�2h

2pi)u
j+1
i + (−ε�t + �1h

2pi+1)u
j+1
i+1

= �1h
2u

j
i−1 + 2�2h

2u
j
i + �1h

2u
j
i+1 − �1h

2qi−1u
j+1(xi−1 − 1)

− 2�2h
2qiu

j+1(xi − 1)− �1h
2qi+1u

j+1(xi+1 − 1)+ �1h
2�tg

j+1
i−1

+ 2�2h
2�tg

j+1
i + �1h

2�tg
j+1
i+1 , i = 1(1)N − 1, j = 0(1)M − 1.

(30)

uj+1(x) = η1 exp

(
√

pi

ε�t
(x − xi)

)

+ η2 exp

(

−
√

pi

ε�t
(x − xi)

)

− 1

pi

[

qiu
j+1(xi − 1)−�tg(xi , tj+1)− uj(xi)

]

,

x ∈ (xi−1, xi+1),

(31)

η1 =
u
j+1

i−1
− 2u

j+1

i + u
j+1

i+1

2(exp(ρ

√

pi
�t )− 2+ exp(−ρ

√

pi
�t ))

+
u
j+1

i−1
− u

j+1

i+1

2(exp(ρ

√

pi
�t )+ exp(−ρ

√

pi
�t ))

,

(32)

η2 =
u
j+1

i−1
− 2u

j+1

i + u
j+1

i+1

2(exp(ρ

√

pi
�t )− 2+ exp(−ρ

√

pi
�t ))

−
u
j+1

i−1
− u

j+1

i+1

2(exp(ρ

√

pi
�t )+ exp(−ρ

√

pi
�t ))

.

(33)

ε�tσ

h2

(

u
j+1

i+1
− 2u

j+1

i + u
j+1

i−1

)

− piη1 exp

(
√

pi

ε�t
(x − xi)

)

+pi

[

η2 exp

(

−
√

pi

ε�t
(x − xi)

)

− 1

pi

(

qiu
j+1(xi − 1)−�tg j+1(xi)− uj(xi)

)

]

−qiu
j+1(xi − 1) = �tg j+1(xi)− u

j
i
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On simplification of Eq. (33) for i = 1, 2, . . . ,N/2 , we 
obtain the fitting factor

where p(0) = 1+�tl(0) and ρ = h/
√
ε . Similarly for 

i = N/2+ 1,N/2+ 2, . . . ,N  , we obtain the fitting factor 
as

Thus, with the fitting factor σ1 and σ2 in Eq. (29), we 
obtain a fully-discrete numerical scheme as

where

From Eq. (36), we obtain a system of equation as

with uj+1
0 = uj+1(0) and uj+1

N = uj+1(xN ) , where

(34)σ1 =
(

ρ/2
√

p(0)/�t

sinh(ρ/2
√

p(0)/�t)

)2

,

(35)σ2 =
(

ρ/2
√

p(2)/�t

sinh(ρ/2
√

p(2)/�t)

)2

,

(36)LN ,M
ε u

j+1
i = ϑ(xi, tj),

LN ,M
ε u

j+1
i =































(−εσ1�t + �1h
2pi−1)u

j+1
i−1 + (2εσ1�t + 2�2h

2pi)u
j+1
i

+(−εσ1�t + �1h
2pi+1)u

j+1
i+1, i = 1(1)N/2,

(−εσ2�t + �1h
2pi−1)u

j+1
i−1 + (2εσ2�t + 2�2h

2pi)u
j+1
i

+(−εσ2�t + �1h
2pi+1)u

j+1
i+1 + �1h

2qi−1u
j+1
i−1−N/2

+2�2h
2qiu

j+1
i−N/2 + �1h

2qi+1u
j+1
i+1−N/2, i = N/2+ 1(1)N ,

and

ϑ(xi, tj) =































�1h
2u

j
i−1 + 2�2h

2u
j
i + �1h

2u
j
i+1 − �1h

2qi−1α
j+1
i−1−N/2

−2�2h
2qiα

j+1
i−N/2 − �1h

2qi+1α
j+1
i+1−N/2 + �1h

2�tg
j+1
i−1

+2�2h
2�tg

j+1
i + �1h

2�tg
j+1
i+1 , i = 1(1)N/2,

�1h
2u

j
i−1 + 2�2h

2u
j
i + �1h

2u
j
i+1 + �1h

2�tg
j+1
i−1

+2�2h
2�tg

j+1
i + �1h

2�tg
j+1
i+1 , i = N/2(1)N .

(37)γ−
1 u

j+1
i−1 + γ 0

1 u
j+1
i + γ+

1 u
j+1
i+1 = Gi,j

The systems in Eq. (37) is solved easily using a suitable 
solver of system of equations.

Discrete stability and uniform convergence

Lemma 3.6  Let ς ∈ {0, 1, 2, . . . ,N } and ψ j+1
ς = min

¯�N ,M ψ
j+1

i
 

and assume that ψ
j+1
ς < 0 . For a mesh func-

tion ψ j+1
i  if ψ j+1

0 ≥ 0 , ψ j+1
N ≥ 0 and LN ,M

ε ψ
j+1
ς ≥ 0 , 

ς = 1, 2, . . . ,N − 1 , then ψ j+1
i ≥ 0 , i = 0, 1, . . . ,N .

γ−
1 = −εσ1�t + �1h

2pi−1,

γ 0
1 = 2εσ1�t + 2�2h

2pi,

r+1 = −εσ1�t + �1h
2pi+1,

Gi,j =











































�1h
2u

j
i−1 + 2�2h

2u
j
i + �1h

2u
j
i+1 − �1h

2qi−1α
j+1
i−1−N/2

−2�2h
2qiα

j+1
i−N/2 − �1h

2qi+1α
j+1
i+1−N/2 + �1h

2�tg
j+1
i−1

+2�2h
2�tg

j+1
i + �1h

2�tg
j+1
i+1 , i = 1(1)N/2,

�1h
2u

j
i−1 + 2�2h

2u
j
i + �1h

2u
j
i+1 − �1h

2qi−1u
j+1
i−1−N/2

−2�2h
2qiu

j+1
i−N/2 − �1h

2qi+1u
j+1
i+1−N/2 + �1h

2�tg
j+1
i−1

+2�2h
2�tg

j+1
i + �1h

2�tg
j+1
i+1 , i = N/2(1)N .
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Proof  For ς = 0(1)N  and ψ j+1
ς = min�̄N ,M ψ

j+1
i  , sup-

pose that ψ j+1
ς < 0 . From the given condition, it is clear 

that ς /∈ {0,N } . So, we consider the following two cases.

Case 1: When ς = 1(1)N/2 , we have

Case 2: When ς = N/2+ 1(1)N − 1 , we have

From the two cases, we see that LN ,M
ε ψ

j+1
ς < 0 , which 

contradicts the given hypothesis. Thus, our assumption 
fails, and hence ψ j+1

i ≥ 0 , i = 0(1)N  . � �

LN ,M
ε,1 ψ j+1

ς = (−εσ1�t + �1h
2pς−1)ψ

j+1

ς−1

+ (2εσ1�t + 2�2h
2pς )ψ

j+1
ς

+(−εσ1�t + �1h
2pς+1)ψ

j+1

ς+1
< 0.

LN ,M
ε,2 ψ j+1

ς = (−εσ2�t + �1h
2pς−1)ψ

j+1
ς−1 + (2εσ2�t + 2�2h

2pς )ψ
j+1
ς

+(−εσ2�t + �1h
2pς+1)ψ

j+1
ς+1 + �1h

2qς−1ψ
j+1
ς−1−N/2

+2�2h
2qςu

j+1
ς−N/2 + �1h

2qς+1ψ
j+1
ς+1−N/2

≤ (−εσ2�t + �1h
2pς−1)ψ

j+1
ς−1 + (2εσ2�t + 2�2h

2pς )ψ
j+1
ς

+(−εσ2�t + �1h
2pς+1)ψ

j+1
ς+1 + �1h

2qς−1ψ
j+1
ς−1 + 2�2h

2qςu
j+1
ς

+�1h
2qς+1ψ

j+1
ς+1 < 0.

Lemma 3.7  The solution uj+1
i  of the difference scheme in 

Eq. (36) is estimated as |uj+1

i | ≤ (1+ µ�t)−1�ϑ�

+max

{

|uj+1

0
|, |uj+1

N
|
}

, ∀i = 0, 1, . . . ,N .

Proof
Let π j+1

i,±  be barrier functions defined by

Then, we have π
j+1
0,± ≥ 0 and π

j+1
N ,± ≥ 0 . Now, let 

ω = (1+ µ�t)−1�ϑ� +max
{

|uj+1
0 |, |uj+1

N |
}

 . Then, 

when i = 1, 2, . . . ,N/2 , we have

And for i = N/2+ 1,N/2+ 2, . . . ,N − 1 , we have

π
j+1
i,± = (1+ µ�t)−1�ϑ� +max

{

|uj+1
0 |, |uj+1

N |
}

± u
j+1
i

LN ,M
ε,1 π

j+1

i,± =(−εσ1�t + �1h
2pi−1)(ω ± u

j+1

i−1
)+ (2εσ1�t

+ 2�2h
2pi)(ω ± u

j+1

i )

+ (−εσ1�t + �1h
2pi+1)(ω ± u

j+1

i+1
)

≥ (�1h
2pi−1 + 2�2h

2pi + �1h
2pi+1)

[

max{|uj+1

0
|, |uj+1

N |}
]

≥ 0.

LN ,M
ε,2 π

j+1
i,± = (−εσ2�t + �1h

2pi−1)(ω ± u
j+1
i−1)+ (2εσ2�t + 2�2h

2pi)(ω ± u
j+1
i )

+ (−εσ2�t + �1h
2pi+1)(ω ± u

j+1
i+1)+ �1h

2qi−1(ω + u
j+1
i−1−N/2)

+ 2�2h
2qi(ω ± u

j+1
i−N/2)+ �1h

2qi+1(ω ± u
j+1
i+1−N/2)

= h2(�1pi−1 + 2�2pi + �1pi+1 + �1qi−1 + 2�1qi + �1qi+1)
[

(1+ µ�t)−1�ϑ� +max{|uj+1
0 |, |uj+1

N |}
]

± ϑ(xi, tj)

≥ h2[�1(pi−1 + pi+1 + qi−1 + qi+1)

+ 2�2(pi + qi)]
[

max{|uj+1
0 |, |uj+1

N |}
]

≥ 0.
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Therefore, we have LMε π
j+1
i,± ≥ 0 , i = 0, 1, 2, . . . ,N  , and 

applying Lemma  3.6, the required stability estimate of 
u
j+1
i  is implied. �

Theorem  3.1  Let uj+1(xi) and uj+1
i  be the solutions of 

the schemes (16) and (36), respectively. Then, the error 
estimate in the spatial discretization is given by

Proof  For i = 0, 1, . . . ,N/2 , the truncation error is

Using Taylor’s series expansion for uj+1
i±1 , we obtain

For �1 and �2 satisfying 2�2 = 1− 2�1 , and using Taylor’s 
series expansion on pi±1 and σ1 , after certain manipula-
tion Eq. (38) becomes

|uj+1(xi)− u
j+1
i | ≤ CN−2, i = 0, 1, 2, . . . ,N .

|LMε uj+1(xi)− LN ,M
ε u

j+1

i |
= | − ε�tu

j+1
xx + p(xi)u

j+1(xi)+ εσ1�tδ2xu
j+1

i

− �1pi+1u
j+1

i+1
− 2�2piu

j+1

i − �1pi−1u
j+1

i−1
|

(38)

|LMε uj+1(xi)− LN ,M
ε u

j+1
i | = | − ε�tu

j+1
xx + p(xi)u

j+1(xi)+ εσ1�t(u
j+1
xx

+ h2

12
u
j+1
xxxx +

h4

360
u
j+1
xxxxxx + O(h6))− �1pi+1(u

j+1
i

+ hu
j+1
x + h2

2
u
j+1
xx + h3

6
u
j+1
xxx + h4

24
u
j+1
xxxx

+ h5

120
u
j+1
xxxxx + O(h6))− 2�2piu

j+1
i

− �1pi−1(u
j+1
i − hu

j+1
x + h2

2
u
j+1
xx − h3

6
u
j+1
xxx

+ h4

24
u
j+1
xxxx −

h5

120
u
j+1
xxxxx + O(h6))|

|LMε uj+1(xi)− LN ,M
ε u

j+1

i |

=|( ε�t

12
u
j+1
xxxx − �1piu

j+1
xx )h2 + (

ε�t

360
u
j+1
xxxxxx

− �tpi

144
u
j+1
xxxx −

�1pi

24
u
j+1
xxxx)h

4 + O(h6)|

≤ | ε�t

12
u
j+1
xxxx − �1piu

j+1
xx |h2 + | ε�t

360
u
j+1
xxxxxx

− �tpi

144
u
j+1
xxxx −

�1pi

24
u
j+1
xxxx|h4 + O(h6) ≤ Ch2.

Now, invoking Lemma 3.6 yields

For i = N
2 + 1, N2 + 2, . . . ,N  , we have

(39)|uj+1(xi)− u
j+1
i | ≤ Ch2, i = 0, 1, 2, . . . ,N/2.

(40)

|LMε uj+1(xi)− LN ,M
ε u

j+1

i |
= | − ε�tu

j+1
xx + p(xi)u

j+1(xi)+ q(xi)u
j+1(xi−N

2

)

+ εσ2�tδ2xu
j+1

i − �1pi+1u
j+1

i+1
− 2�2piu

j+1

i

− �1pi−1u
j+1

i−1
− �1qi−1u

j+1

i−1−N
2

− 2�2qiu
j+1

i−N
2

− �1qi+1u
j+1

i+1−N
2

|.

Using Taylor’s series expansion on uj+1
i±1 , pi±1 , qi±1−N

2
 and 

σ2 in Eq. (40) gives
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Table 1  EN,Mε  , EN,M , RN,Mε  and RN,M of Example 4.1

ε N :  16 32 64 128 256

M :  32 64 128 256  512

2−00 5.2038e−02 1.7483e−02 4.9785e−03 1.3260e−03 3.4229e−04

1.5736 1.8122 1.9086 1.9538

2−02 4.7981e−02 1.5766e−02 4.3204e−03 1.1229e−03 2.8612e−04

1.6056 1.8676 1.9439 1.9725

2−04 4.5798e−02 1.8492e−02 5.3904e−03 1.4174e−03 3.6547e−04

1.3084 1.7784 1.9271 1.9554

2−06 3.5906e−02 1.8311e−02 6.1997e−03 1.3990e−03 4.5341e−04

0.9715 1.5624 2.1478 1.6255

2−08 3.3221e−02 1.2981e−02 6.1191e−03 2.7049e−03  1.0428e−03

1.3557 1.0850 1.1777 1.3751

2−10 3.3117e−02 1.2380e−02 4.8776e−03 2.0203e−03 1.0245e−03

1.4196 1.3438 1.2716 0.9796

2−12 3.3117e−02 1.2376e−02 4.7903e−03 2.0772e−03 1.0013e−03

1.4200 1.3694 1.2055 1.0528

2−14 3.3117e−02 1.2376e−02 4.7902e−03 2.0709e−03 1.0076e−03

1.4200 1.3694 1.2098 1.0393

2−16 3.3117e−02 1.2376e−02 4.7902e−03 2.0709e−03 1.0075e−03

1.4200 1.3694 1.2098 1.0395

2−18 3.3117e−02 1.2376e−02 4.7902e−03 2.0709e−03 1.0075e−03

1.4200 1.3694 1.2098 1.0395

E
N,M 5.2038e−02 1.8492e−02 6.1997e−03 2.7049e−03 1.0428e−03

R
N,M 1.4927 1.5766 1.1966 1.3751

Table 2  EN,Mε  , EN,M , RN,Mε  and RN,M of Example 4.2

ε N → 18 36 72 144 288

M → 18 36 72 144  288

2−00 4.9315e−03 1.6091e−03 5.5532e−04 1.9610e−04 3.9612e−05

1.6158 1.5349 1.5017 1.4942

2−02 8.3785e−03 2.7112e−03 9.6535e−04 3.6187e−04 1.3305e−04

1.6278 1.4898 1.4156 1.4435

2−04 1.2009e−02 4.7851e−03 1.5672e−03 5.6198e−04 2.2895e−04

1.3275 1.6104 1.4796 1.2955

2−06 1.2133e−02 6.2859e−03 1.9900e−03 7.4889e−04 3.2170e−04

0.9487 1.6594 1.4099 1.2190

2−08 9.5475e−03 6.7757e−03 2.8381e−03 1.5221e−03  7.7066e−04

0.4948 1.2554 0.8989 0.9809

2−10 9.3401e−03 5.0933e−03 3.4973e−03 1.6184e−03 7.2280e−04

0.8748 0.5424 1.1117 1.1629

2−12 9.3397e−03 5.0529e−03 2.6405e−03 1.5946e−03 7.2447e−04

0.8863 0.9363 0.7276 1.1382

2−14 9.3397e−03 5.0529e−03 2.6371e−03 1.3578e−03 7.1757e−04

0.8863 0.9382 0.9577 0.9201

2−16 9.3397e−03 5.0529e−03 2.6371e−03 1.3577e−03 6.9879e−04

0.8863 0.9382 0.9578 0.9582

2−18 9.3397e−03 5.0529e−03 2.6371e−03 1.3577e−03 6.9879e−04

0.8863 0.9382 0.9578 0.9582

E
N,M 1.2133e−02 6.7757e−03 3.4973e−03 1.5946e−03 7.7066e−04

R
N,M 0.8405 0.9541 1.1330 1.0490

Table 3  Comparison of the proposed method and other results in literature

R
2N,4M
ε

 of Example 4.1

            N  :  64 128 256 512

            M  :  32 128 512 2048

Proposed method

            ε−16 1.8871 2.1168 2.0830 1.9190

            ε−18 1.8871 2.1168 2.0830 1.9190

            ε−20 1.8871 2.1168 2.0830 1.9190

Results in [10]

            ε−16 1.7908 1.8314 1.5121 1.6261

            ε−18 1.7908 1.8354 1.5091 1.6257

            ε−20 1.7908 1.8354 1.5091 1.6257

E
N,M and RN,M of Example 4.2 for T = 1

            N = M  :  18 36 72 144 288

Proposed method

            EN 6.7757e−03 3.4973e−03 1.5994e−03 7.1757e−04 3.6436e−04

            RN 0.9541 1.1287 1.1563 0.9778

Results [11]

            EN,M 1.1200e−02 7.0100-03 2.9700e−03 1.1400e−03 4.0600e−04

            RN,M 0.6760 1.2390 1.3814 1.4895
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Fig. 1  Line plots of the solution for Example 4.1 for N = 128 at four 
time levels a. ε = 20 and b. ε = 2−16

Fig. 2  Surface plots of the solution for Example 4.1 for N = 128 and 
M = 64 a. ε = 20 and b. ε = 2−16
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)|h4 + O(h6) ≤ Ch2.

Invoking Lemma 3.6 gives

Since h = 2
N  , combining the inequalities (39) and (41) 

gives the required error estimate. Hence, the proposed 
scheme is uniformly convergent of order two in space.�  �

Theorem 3.2  Let u(x) be the solution of Eq.(1) and uj+1
i  

be the solution of Eq. (36). Then, the uniform error is esti-
mated as

(41)
|uj+1(xi)− u

j+1
i | ≤ Ch2, i = N

2
+ 1,

N

2
+ 2, . . . ,N .

sup
i=0(1)N ,j=0(1)M

|u(xi, tj+1)− u
j+1
i | ≤ C(�t + N−2)
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Proof  Combining the proofs of Lemma 3.4 and Theorem 
3.1, we can obtain the required uniform error estimate. ��

Numerical experiments, results and discussions
To illustrate the implementation of the present numeri-
cal scheme, we solved model problems. Since the exact 
solutions of both problems are not known, we apply the 
double mesh principle [24] to determine the maximum 
nodal error as EN ,M

ε = max
1≤i≤N

(uN ,M
i − u2N ,2M

i ) , where 

u2N ,2M(xi, tj) is obtained by doubling the mesh numbers 
for a fixed transition parameter. The parameter-uni-
form maximum error is determined as 
EN ,M = max

ε
EN ,M
ε  . The maximum convergence rate of 

the method is computed as RN ,M
ε = log(EN ,M

ε /E2N ,2M
ε )

log(2)  and 
its uniform convergence rate is determined by 
RN ,M = max

ε
RN ,M
ε .

Example 4.1

[10]. Consider − ∂u
dt

+ ε ∂2u

∂x2
− 5u(x, t)+ 2u(x − 1, t) = −2 , 

subject to u(x, 0) = sin(πx) , x ∈ [0, 2] , u(x, t) = 0 , 
(x, t) ∈ {(x, t) : x ∈ [−1, 0] and t ∈ [0, 2]} and u(2, t) = 0 , 
(2, t) ∈ {(2, t) : 0 ≤ t ≤ 2}.

Example 4.2
[11]. Consider − ∂u

dt
+ ε ∂2u

∂x2
− (x + 6)u(x, t)+ (x2 + 1)

u(x − 1, t) = −3 , subject to u(x, 0) = 0 , x ∈ [0, 2] , 
u(x, t) = 0 , (x, t) ∈ {(x, t) : x ∈ [−1, 0]; t ∈ [0, 2]} and 
u(2, t) = 0 , (2, t) ∈ {(2, t) : t ∈ [0, 2]}.

The numerical solutions and error analysis of both 
examples are computed applying the proposed numeri-
cal scheme by using the MATLAB R2019a packages. We 
computed the examples for �1 = 1/24 and �1 = 11/24 . 
The maximum nodal error and convergence rate of 
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Fig. 3  Line plots of the solution for Example 4.2 for N = 144 at four 
time levels a. ε = 20 and b. ε = 2−14

Fig. 4  Surface plots of the solution for Example 4.2 for N = 144 and 
M = 144 a. ε = 20 and b. ε = 2−14
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both examples are computed and the results are as 
given in Tables 1 and 2, respectively. From these tables, 
we observe that by increasing the number of meshes, 
the maximum error decreases, while decreasing the 
value of ε yields an stabled maximum error. This con-
firms the uniform convergence of the proposed numer-
ical scheme. Table 3 shows the accuracy of our scheme 
as compared to other works in the literature.

Graphical simulations of the solutions of the two 
examples are shown in Figs.  1, 2, 3, 4. From the line 
plots in Figs. 1 and 3, we observe the solution behaviors 
at different time levels and ε . Also, to depict the physi-
cal behavior of the solutions surface plots are shown in 
Figs.  2 and  4 for the two examples, respectively. From 
these figures, we see that as the value of ε decreases, 
the width of the layers decreases. Figure  5 shows the 
log-log plots of the maximum error versus the number 
of meshes for both examples, which indicates that the 

developed numerical method is convergent independ-
ent of the perturbation parameter.

Conclusion
In this paper, we considered a time dependent singularly 
perturbed parabolic reaction-diffusion problem involving 
spatial delay. The influence of the perturbation parame-
ter forms strong boundary layers in the solution and the 
large delay term gives rise to strong layer at x = 1 . We 
treated such problem by developing a numerical scheme 
applying the implicit Euler method in the temporal vari-
able and fitted spline tension method in the spatial vari-
able. The stability estimate and the uniform error bound 
are investigated and proved. To validate the theoreti-
cal findings, we solved two numerical examples. Based 
on the theoretical and experimental results, we con-
cluded that the proposed numerical scheme is uniformly 
convergent.
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