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Abstract
Objective Bananas are one of the most popular fruits in the world, providing food security and employment 
opportunities in several developing countries. Increasing the anthocyanin content of banana fruit could improve 
the health-promoting properties. Anthocyanin biosynthesis is largely regulated at the transcriptional level. However, 
relatively little is known about the transcriptional activation of anthocyanin biosynthesis in banana.

Results We analysed the regulatory activity of three Musa acuminata MYBs that were predicted by bioinformatic 
analysis to transcriptionally regulate anthocyanin biosynthesis in banana. MaMYBA1, MaMYBA2 and MaMYBPA2 did 
not complement the anthocyanin-deficient phenotype of the Arabidopsis thaliana pap1/pap2 mutant. However, 
co-transfection experiments in A. thaliana protoplasts showed that MaMYBA1, MaMYBA2 and MaMYBPA2 function as 
components of a transcription factor complex with a bHLH and WD40 protein, the so called MBW complex, resulting 
in the activation of the A. thaliana ANTHOCYANIDIN SYNTHASE and DIHYDROFLAVONOL 4-REDUCTASE promoters. The 
activation potential of MaMYBA1, MaMYBA2 and MaMYBPA2 was increased when combined with the monocot 
Zea mays bHLH ZmR instead of the dicot AtEGL3. This work paves the path towards decoding the MBW complex-
mediated transcriptional activation of anthocyanin biosynthesis in banana. It will also facilitate research towards 
increased anthocyanin content in banana and other monocot crops.
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Introduction
Bananas (Musa) are monocotyledonous, perennial 
plants which are grown in many tropical and subtropi-
cal countries. They are one of the most important food 
crops, particularly in the developing world [1]. While the 
sweet fruits of dessert bananas are popular in Europe and 
North America, plantains or cooking bananas are com-
monly eaten as a staple food in Africa and Latin America 
where they provide food security, as well as employment 
opportunities [2]. Furthermore, banana fruits are rich in 
several health-promoting minerals and beneficial phyto-
chemicals such as vitamins and flavonoids [3].

Flavonoids are a major group of plant specialised 
metabolites that share a basic structure of two aromatic 
C6-rings connected by a heterocyclic ring [4]. Reorgan-
isation and modification of the carbon skeleton, such as 
oxidation, glycosylation, acylation, and methylation cre-
ate a versatile group comprising more than 9,000 differ-
ent flavonoid derivatives [5]. Consequently, flavonoids do 
not only contribute to the nutritional value of fruits, but 
also play important roles in manifold processes. While 
the group of coloured anthocyanin pigments attracts ani-
mals for pollination and dispersal of seeds by colouring 
flowers and fruits, other flavonoids protect plants against 
UV-B irradiation or increase plant fertility [6–10]. Fla-
vonoids from many species have been reported to have 
anti-pathogenic properties, this includes flavonoids from 
carnation (Dianthus caryophyllus) which have antifungal 
activity against the plant’s major pest Fusarium oxyspo-
rum f.sp. dianthi [11, 12]. The tropical race 4 (TR4) of 
the banana Fusarium wilt (commonly known as ‘Panama 
disease’) is caused by another Fusarium subspecies called 
Fusarium oxysporum f. sp. cubense (Foc) and threatens 
the global banana production [13]. Transcriptome analy-
ses of susceptible and resistant banana cultivars infected 
by Foc TR4 revealed an increased transcription of flavo-
noid biosynthesis related genes in the resistant cultivar, 
suggesting an involvement of flavonoids in the defence 
against Foc TR4 [14].

Flavonoid biosynthesis is one of the best characterised 
pathways of the specialised metabolism and has been 
extensively studied in many plant species [15]. In banana, 
several flavonoid biosynthesis related enzymes have been 
identified and characterised [16, 17]. Regulation of struc-
tural genes on a transcriptional level allows a specific 
response to environmental influences as well as develop-
ment and organ specific expression [18–20]. MYB tran-
scription factors are common transcriptional regulators 
of flavonoid biosynthesis. While some MYBs act inde-
pendently, others interact with basic helix-loop-helix 
(bHLH) and WD40 proteins to form a protein complex 
called MBW complex [21]. MYB proteins are present 
in all eukaryotes and characterised by highly conserved 
DNA-binding domains [22]. These MYB domains consist 

of up to three imperfect amino acid repeat sequences, 
based on which they are classified. R2R3-MYBs are the 
most abundant class of plant MYBs and reveal versa-
tile functions in plant-specific processes [23]. Besides 
core- and specialised metabolism they are also involved 
in cell fate and -identity definition, developmental pro-
cesses and the response to biotic and abiotic stresses 
[23]. Well-known R2R3-MYBs which act as activators 
of anthocyanin biosynthesis include C1 (COLOURED 
ALEURONE1) from maize (Zea mays), as well as PAP1 
(PRODUCTION OF ANTHOCYANIN PIGMENT1/
MYB75) and PAP2 (MYB90) from Arabidopsis (Arabi-
dopsis thaliana) [24, 25]. They act as part of an MBW 
complex and control the promoters of the anthocyanin 
biosynthesis related structural genes as for example 
ANTHOCYANIDIN SYNTHASE (ANS) and DIHYDRO-
FLAVONOL 4-REDUCTASE (DFR) [26–29].

In banana, 285 R2R3-MYB proteins have been identi-
fied in a genome-wide study, including several putative 
regulators of flavonoid biosynthesis [30]. In addition, 
MYB31, MYB4 and MYBPR1 – MYBPR4 have been iden-
tified as negative regulators of flavonoid biosynthesis in 
banana [31, 32]. Despite the recent identification of two 
proanthocyanidin biosynthesis activating R2R3-MYBs 
[33], little functional data is available on positive regula-
tors (activators) of flavonoid and in particular anthocy-
anin biosynthesis in M. acuminata.

Here, we describe the regulatory properties of 
three MaMYBs, named MaMYBA1, MaMYBA2 and 
MaMYBPA2, with a possible role in the regulation of 
anthocyanin biosynthesis. As one of these MaMYBs was 
very recently published under the name MaMYBPA2 
[33], we used this name to avoid confusion due to mul-
tiple protein naming. Regulatory activity was assessed by 
in planta complementation experiments of the antho-
cyanin deficient A. thaliana regulatory mutant pap1/
pap2 and co-transfection experiments in A. thaliana 
protoplasts (see Supplementary File 1 for detailed meth-
ods). Our results show that MaMYBA1, MaMYBA2 and 
MaMYBPA2 are able to activate the promoters of AtANS 
and AtDFR as part of an MBW complex. Furthermore, 
we show that the activation potential of MaMYBA1, 
MaMYBA2 and MaMYBPA2 is increased when com-
bined with the monocotyledonous bHLH ZmR instead 
of the dicot bHLH protein ENHANCER OF GLABRA3 
(AtEGL3).

Main text
We aimed to analyse the regulatory properties of three 
MaMYBs which have been previously assigned to a pos-
sible role in positive regulation of anthocyanin biosyn-
thesis (Ma06_g05960 or MaMYBA1, Ma09_g27990 or 
MaMYBA2, Ma10_g17650 or MaMYBPA2). Since all 
three MaMYB genes were detected in the haploid M. 
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acuminata reference genome sequence DH (doubled-
haploid) Pahang v2 [34, 35], these MYBs appear to be 
present in the same sub-genome, suggesting that they 
are different genes and not haplo-copies. We attempted 
to amplify the corresponding coding sequences (CDSs) 
on a template collection containing cDNA from differ-
ent banana samples. The CDSs of all three MaMYBs were 
successfully amplified on cDNA derived from peel tissue 
of M. acuminata (AAA group) cultivar ‘Grand Naine’ 
grown in the field in Lucknow, India.

In a first approach, we performed a complementation 
assay using the regulatory A. thaliana pap1/pap2 double 
mutant (pap1: transposon tag allele RIKEN_PST16228 
in Nö-0 background; pap2: T-DNA insertion allele 
SALK_093731 in Col-0 background [26]), which cannot 
produce anthocyanins in the seedling (Fig. 1). Seedlings 

were grown on anthocyanin synthesis-inducing media to 
analyse the ability of MaMYBs under the enhanced cau-
liflower mosaic virus 35  S promotor (2 × 35  S) to com-
plement the pap1/pap2 anthocyanin deficiency. While 
wild-type seedlings (Col-0: Nottingham Arabidopsis 
Stock Centre (NASC) ID N1092; Nö-0: NASC ID N3081) 
accumulated high levels of red anthocyanin pigments, 
pap1/pap2 seedlings did not. Although MaMYBA1, 
MaMYBA2 or MaMYBPA2 were successfully expressed 
in the transgenic seedlings (Supplementary Figure S1), 
the anthocyanin level in pap1/pap2 plants expressing 
MaMYBA1, MaMYBA2 or MaMYBPA2 did not differ 
from that of the double mutant. Accordingly, MaMYBA1, 
MaMYBA2 and MaMYBPA2 do not appear to be able to 
complement the mutant phenotype and thus to regulate 
anthocyanin biosynthesis in A. thaliana in combination 

Fig. 1 MaMYBA1, MaMYBA2 and MaMYBPA2 cannot complement the anthocyanin deficient phenotype of A. thaliana pap1/pap2 mutant seedlings. (A) 
Representative pictures of anthocyanin accumulation in 6-day-old MaMYB-expressing pap1/pap2 seedlings. One representative plant per construct is 
shown. (B) Photometric measurement of the sucrose induced anthocyanin content in pap1/pap2 seedlings expressing 2 × 35 S-driven MaMYBs. Col-0, 
Nö-0 (wildtypes) and pap1/pap2 were used as controls. Error bars indicate the standard deviation of three biological replicates. The different numbers 
(1-4) represent individual, independent, transgenic lines. The numbers in the table below the graph indicate the relative anthocyanin content and the 
corresponding standard deviation of individual transgenic lines.
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with the bHLH and WD40 genes expressed in A. thaliana 
seedlings.

Lloyd et al. [28] analysed the Z. mays anthocyanin reg-
ulator C1 by generating transgenic A. thaliana overex-
pression lines. In their study, Lloyd et al. generated three 
independent ZmC1-expressing A. thaliana lines that did 
not show an increased anthocyanin content compared 
to wildtype. Similar results were obtained in transgenic 
tobacco. However, further experiments suggested that 
ZmC1 must interact with the maize bHLH ZmR to acti-
vate anthocyanin biosynthesis in the heterologous A. 
thaliana system [28]. Phylogenetic analysis [36] showed 
that the anthocyanin biosynthesis regulating R2R3-MYBs 
from several monocots such as Z. mays and rice (Oryza 
sativa), are part of a different phylogenetic clade than the 
anthocyanin regulators from several dicots, such as A. 
thaliana or grapevine (Vitis vinifera) and further mono-
cots, including onion (Allium cepa) and lily (Lilium hyb-
rida). Experiments in snapdragon (Antirrhinum majus) 
have also shown that the monocot AcMYB1 can activate 
anthocyanin production in dicots [36]. The phylogenetic 
differences between anthocyanin biosynthesis activat-
ing R2R3-MYBs and the dependence of ZmC1 on ZmR 
in dicots suggest an explanation for our observations. 
For example, the MaMYBs may depend on their endog-
enous or at least monocot bHLH for effective activation 
of structural anthocyanin biosynthesis genes. To inves-
tigate the phylogenetic differences between anthocy-
anin biosynthesis regulating R2R3-MYBs from different 
plant species, an approximate maximum-likelihood tree 
was constructed (Fig. 2A). The resulting tree, which also 
included R2R3-MYBs that activate other branches of 
flavonoid biosynthesis, revealed two distinct clades of 
anthocyanin-related R2R3-MYBs (highlighted in red). 
MaMYBA1, MaMYBA2 and MaMYBPA2 form a clade 
with MYB10 from Triticum aestivum and exhibit a close 
evolutionary relationship with ZmC1, OsC1 and anthocy-
anin regulating MYBs from other monocots. In contrast, 
AtPAP1 and AtPAP2 fall into a second clade of anthocy-
anin-related MYBs. Furthermore, differences between 
anthocyanin biosynthesis regulating bHLHs were anal-
ysed in a second approximate maximum-likelihood tree 
(Fig. 2B). The tree showed that monocot bHLH proteins 
involved in the regulation of anthocyanin biosynthesis 
form a separate clade (highlighted in red). Both, ZmR 
and several putative anthocyanin biosynthesis regulat-
ing bHLHs from banana, fall into this clade. These phy-
logenetic analyses show that anthocyanin biosynthesis 
regulating R2R3-MYB and bHLH proteins from several 
monocot species appear to be distinct from other antho-
cyanin biosynthesis regulating R2R3-MYB and bHLH 
proteins, for example from A. thaliana. These differences 
may imply that MaMYBA1, MaMYBA2 and MaMYBPA2 
are dependent on a banana or other monocot bHLH.

To follow up this idea, we further investigated the reg-
ulatory properties of the three MaMYBs by performing 
co-transfection assays (Fig. 3) in hypocotyl-derived, dark-
cultured A. thaliana At7 protoplasts [37] with different 
bHLH proteins from A. thaliana (AtEGL3) or Z. mays 
(ZmR) and the A. thaliana WD40 protein TRANSPAR-
ENT TESTA GLABRA1 (AtTTG1). Their potential to 
activate the promoters of AtDFR and AtANS, which are 
important structural genes of anthocyanin biosynthesis 
[38], was analysed. While none of the MaMYBs was able 
to independently activate proAtANS or proAtDFR, which 
both contain conserved cis-regulatory elements, a slight 
activation of proAtDFR was detected when MaMYBA1 or 
MaMYBPA2 was combined with AtEGL3 and AtTTG1. 
In combination with AtEGL3 and AtTTG1, MaMYBPA2 
showed the strongest activation of proAtDFR and was 
also able to activate proAtANS. In combination with ZmR 
and AtTTG1, the three MYBs MaMYBA1, MaMYBA2, 
and MaMYBPA2 showed a significant activation poten-
tial on proAtDFR and proAtANS. All three MaMYBs 
showed a higher activation potential in an MBW com-
plex with ZmR and AtTTG1 than in combination with 
AtEGL3 and AtTTG1.

These results show that MaMYBA1, MaMYBA2 and 
MaMYBPA2 are able to activate proAtANS and pro-
AtDFR as part of an MBW complex and that MaMYBPA2 
shows the strongest activation potential. Furthermore, 
MaMYBA1, MaMYBA2 and MaMYBPA2 show a higher 
activation potential when combined with the monocot 
bHLH ZmR instead of the dicot bHLH AtEGL3.

The phylogenetic differences mentioned above could 
explain the observed higher activation potentials of 
the analysed MaMYBs in combination with ZmR and 
AtTTG1 instead of AtEGL3 and AtTTG1. It is con-
ceivable that these differences impede the interac-
tion between the tested MaMYBs and the dicot bHLH 
AtEGL3. Since MaMYBPA2 shows the highest activation 
potential and is also able to activate proAtANS in com-
bination with AtEGL3 or ZmR, differences between the 
three MaMYBs affecting the interaction with the AtEGL3 
are likely and should be further investigated. Interest-
ingly, MaMYBPA2 did not complement the anthocyanin 
deficient phenotype of A. thaliana pap1/pap2 mutant 
seedlings, but was able to activate proAtANS and pro-
AtDFR when combined with AtEGL3 in co-transfection 
experiments in A. thaliana protoplasts. Although previ-
ous studies have shown AtEGL3 expression in A. thali-
ana seedlings [21], it is possible that the level was too 
low to activate anthocyanin biosynthesis in combination 
with MaMYBPA2. Furthermore, the At7 cell line used for 
co-transfection experiments was established more than 
25 years ago. This long period of propagation in suspen-
sion cell culture has caused a number of genomic and 
transcriptomic changes [39]. These changes may also 
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Fig. 2 Rooted approximately maximum-likelihood trees of MYB (A) and bHLH (B) transcription factors. Circle sizes represent bootstrap values. Gene 
identifiers of banana proteins are highlighted in blue.
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Fig. 3 MaMYBA1, MaMYBA2 and MaMYBPA2 can activate proAtDFR and proAtANS as part of an MBW complex. The ability of MaMYBs to activate pro-
AtDFR-GUS and proAtANS-GUS reporter constructs in combination with different bHLH proteins (AtEGL3, ZmR) and a WDR (AtTTG1) was analysed by co-
transfection in A. thaliana At7 protoplasts. The relative promoter activity refers to the measured GUS reporter enzyme activity. Promoter activity is given 
relative to the values obtained for the A. thaliana MBW complex (AtPAP1, AtEGL3, AtTTG1). Error bars indicate the standard deviation of five independent 
biological replicates. Statistical significance is indicated by asterisks which mark p-values < 0.05.
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explain the differences between seedling and cell culture 
analyses.

The expression profiles of MaMYBA1, MaMYBA2 
and MaMYBPA2 have previously been analysed in 
embryogenic cell suspension, seedling, root and differ-
ent developmental stages of leaf, pulp and peel [30]. The 
expression of MaMYBA1 was strongest in pulp (devel-
opmental stage S2-S3), MaMYBA2 expression was rela-
tively low in all samples and MaMYBPA2 showed highest 
expression in seedlings and early developmental stages 
of pulp (S1). This gene expression pattern may indicate 
organ specific MaMYBA1, MaMYBA2 and MaMYBPA2 
activity in banana. Since flavonoid biosynthesis is largely 
regulated at the transcriptional level, it would be par-
ticularly interesting to analyse the expression levels of 
MaMYBA1, MaMYBA2, and MaMYBPA2 in anthocy-
anin rich organs such as bract or pseudostem to correlate 
anthocyanin content with MaMYB transcript abundance.

Deng et al. [32] performed an expression analysis of 
genes related to flavonoid biosynthesis using leaves of 
banana plants overexpressing the anthocyanin repressor 
MaMYB4. They found that the expression of MaMYBA1 
and MaMYBPA2, together with MaDFR and MaANS, is 
decreased in plants overexpressing MaMYB4, compared 
to wildtype. These data support a proposed functionality 
of MaMYBA1 and MaMYBPA2 as transcriptional activa-
tors of anthocyanin biosynthesis in banana, as MaMYB4 
could cause a feedback regulation of the positive regula-
tors of anthocyanin biosynthesis, including MaMYBA1 
and MaMYBPA2.

Recently, Rajput et al. [33] showed that MaMYBPA2 
can activate the banana ANS, ANR and LAR promoters. 
They also showed that MaMYBPA2 can partially rescue 
the proanthocyanin deficiency of the A. thaliana tt2-1 
mutant. The reported ability of MaMYBPA2 to activate 
proMaANS supports the proposed role of MaMYBPA2 in 
the regulation of anthocyanin biosynthesis. However, the 
partial complementation of the proanthocyanin deficient 
phenotype of the A. thaliana tt2-1 R2R3-MYB mutant, as 
well as the ability to activate the banana ANR and LAR 
promoters, indicates a role in the regulation of proantho-
cyanidin biosynthesis. Such dual role in the regulation 
of flavonoid biosynthesis has previously been suggested 
for R2R3-MYB transcription factors from grapevine, 
blueberry (Vaccinium species) and apple (Malus domes-
tica) [40–43]. In several species, including A. thaliana, Z. 
mays and Petunia hybrida, anthocyanin biosynthesis is 
regulated by an MBW complex [21, 28, 44–46]. Our co-
transfection assays showed that MaMYBA1, MaMYBA2 
and MaMYBPA2 are able to activate proAtANS and 
proAtDFR as part of an MBW complex with ZmR 
and AtTTG1 in planta. As shown in a previous study 
by Pucker et al. [30], it is known that MaMYBA1, 
MaMYBA2, and MaMYBPA2 are all known to contain a 

bHLH-binding consensus motif [27]. Thus, the regulation 
of anthocyanin biosynthesis by MaMYBA1, MaMYBA2, 
and MaMYBPA2 is likely to depend on bHLH and WD40 
proteins. Based on our tree (Fig. 2B), the bHLH encod-
ing genes Ma05_g23010, Ma11_g19640, Ma11_g16060, 
Ma08_g11190 and Ma11_g03740 could be suitable can-
didates for further studies on the transcriptional activa-
tion of anthocyanin biosynthesis by MBW complexes. 
In addition, future analyses should additionally include 
MaTTG1 to identify a complete functional MBW com-
plex in banana and to determine wether the use of endog-
enous WD40 protein further enhances the activation 
potential of the MBW complex.

The results presented, in particular the approxi-
mate maximum-likelihood trees and the co-transfec-
tion assays, show that MaMYBA1, MaMYBA2, and 
MaMYBPA2 have the ability to transcriptionally activate 
expression of structural anthocyanin biosynthesis genes 
in an MBW complex with a suitable bHLH partner. The 
activation potential of the tested MaMYBs is increased 
when the MaMYBs are combined with the monocot 
bHLH ZmR instead of the dicot bHLH AtEGL3.

This is a step towards deciphering the MBW complex-
mediated transcriptional activation of flavonoid bio-
synthesis in banana. It also provides a basis for further 
research to increase anthocyanin production in banana, 
which could improve fruit quality and disease resistance.

Limitations
The co-transfection assays revealed that MaMYBA1, 
MaMYBA2, and MaMYBPA2 can activate two structural 
genes of anthocyanin biosynthesis from A. thaliana as 
part of an MBW complex. To further investigate the pro-
motor activation potential of the MaMYBs, the co-trans-
fection analysis could be expanded to other structural 
genes of anthocyanin biosynthesis, as well as promoters 
and bHLH and WDR candidates from banana. In addi-
tion, yeast two-hybrid or other protein-protein interac-
tion experiments could be performed to investigate the 
affinity between MYB and bHLH proteins. To elucidate 
the regulatory role in banana and to confirm possible tar-
get genes, future studies should include an overexpres-
sion of the three MaMYBs in banana.

Abbreviations
ANS  Anthocyanidin synthase
A. thaliana  Arabidopsis thaliana
bHLH  Basic helix-loop-helix
C1  Coloured aleurone1
DFR  Dihydroflavonol 4-reductase
EGL3  Enhancer of glabra3
Foc  Fusarium oxysporum f. sp. cubense
M. acuminata  Musa acuminata
O. sativa  Oryza sativa
PAP  Production of anthocyanin pigment
TR4  Tropical race4
TTG1  Transparent testa glabra1
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Z. mays  Zea mays
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