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Abstract 

Objective To investigate CITED1 as a potential biomarker of anti‑endocrine response and breast cancer recurrence, 
given its previously determined role in mediating estrogen‑dependant transcription. The study is a continuation of 
earlier work establishing the role of CITED1 in mammary gland development.

Results CITED1 mRNA is associated with estrogen‑receptor positivity and selectively expressed in the GOBO data‑
set of cell lines and tumours representing the luminal‑molecular subtype. In patients treated with tamoxifen, higher 
CITED1 correlated with better outcome, suggesting a role in anti‑estrogen response. The effect was particularly 
evident in the subset of estrogen‑receptor positive, lymph‑node negative (ER+/LN−) patients although notice‑
able divergence of the groups was apparent only after five years. Tissue microarray (TMA) analysis further validated 
the association of CITED1 protein, by immunohistochemistry, with favourable outcome in ER+, tamoxifen‑treated 
patients. Although we also found a favourable response to anti‑endocrine treatment in a larger TCGA dataset, the 
tamoxifen‑specific effect was not replicated. Finally, MCF7 cells overexpressing CITED1 showed selective amplification 
of AREG but not TGFα suggesting that maintenance of specific ERα‑CITED1 mediated transcription is important for the 
long‑term response to anti‑endocrine therapy. These findings together confirm the proposed mechanism of action of 
CITED1 and support its potential use as a prognostic biomarker.
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Introduction
Transcriptional coregulators comprise a family of pro-
teins, which often do not harbour DNA-binding domains 
but function within complexes to affect target gene 
expression of a given transcription factor [1]. CITED1 
encodes the founding member of a family of three 
related proteins with a homologous C-terminal domain 
responsible for interaction with the coactivator fam-
ily of P300-CBP [2]. A CITED1 knockout mouse model 
we previously described had a mammary gland pheno-
type defined by stunted ductal outgrowth at puberty and 
altered transcription of a subset of estrogen-responsive 
genes. The phenotype could in part be explained by ear-
lier work showing that CITED1 acted as coregulator for 
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the estrogen receptor [3, 4]. We hypothesised that main-
tenance of the ERα-CITED1 signalling pathway was 
indicative of a more normally functioning epithelium 
and subsequently showed that CITED1 correlated with 
better breast cancer prognosis in a tumour dataset [5]. 
In this study we sought to verify its proposed function 
as an ERα-coregulator specifically in breast cancer cells, 
further elucidate its potential role as a prognostic indi-
cator, and investigate its relevance, if any, for treatment 
response. To do this, we examined CITED1 mRNA and 
protein expression, in human breast cancer cell lines as 
well as several independent tumour datasets. Interrogat-
ing the publicly available database, GOBO, served as a 
starting point to develop our hypotheses. To further vali-
date our observations, we used a previously described tis-
sue microarray (TMA) and the publicly available TCGA 
breast cancer dataset. We additionally generated MCF7 
cells stably overexpressing CITED1 to examine changes 
in gene transcription.

Main text
Results and discussion
CITED1 is expressed in the breast cancer cell lines 
and tumours of the ER+/luminal subtype and correlates 
with better prognosis in a tamoxifen‑treated cohort
The GOBO database allows for the investigation of gene 
expression across a panel of 51 breast cancer cell lines 
and 1881 breast tumours with the advantage of stratify-
ing by molecular subtype [6]. The molecular subtypes 
(ER+/luminal, HER2, and basal-like) established in a 
landmark paper in 2000, redefined our understanding 
of breast cancer in terms of a tumour genotype/pheno-
type that could explain differences in clinical presenta-
tion and treatment response, and inform prognosis [7, 
8]. Interrogation of this database revealed that CITED1 
is expressed in cell lines that represent the ER+/luminal 
subtypes (MCF, T47D, SkBr3) but absent in basal-like 
cell lines (HCC1937, BT549, Sum149) (Fig. 1a). Western 
blot analysis confirmed that this correlation extended to 
protein expression (Fig.  1b). Moreover, the association 
with the luminal subtype was retained in tumours, and 
our previous observation that CITED1 expression corre-
lated with ERα-positivity was confirmed (Fig. 1c, d) [5, 9, 
10]. Further analysis revealed that patients treated with 

tamoxifen (TAM) with high relative CITED1 expres-
sion, had increased distant metastasis-free survival 
(DMFS) (Fig.  1e). This was not simply reflecting ERα 
gene expression as ESR1 alone was not prognostic in this 
dataset. Furthermore, the survival rate of patients in the 
low CITED1 expression group were comparable to the 
untreated group (Additional file  1: Fig. S1a, b). The dif-
ference in DMFS was especially apparent in the subset of 
tamoxifen-treated tumours that were estrogen-receptor 
positive, lymph node negative (ER+/LN−). (Fig. 1f ). This 
observation is notable because these are typically con-
sidered a good prognostic group where, in most cases, 
surgery, with or without adjuvant treatment, is curative. 
Patients can however succumb to much later recurrence, 
even as much as 20 years after their primary cancer. The 
absolute risk for low-grade, LN− tumours (T1N0) is 
approximately 10% in the 5–20 years following diagnosis 
[11]. Having means to identify and parse high-risk/non-
responders and specifically later recurrence is therefore 
highly sought after.

CITED1 protein expression in tamoxifen‑treated tumours 
correlates with better patient outcome
Following surgery, tumours are processed using routine 
clinical pathology to assess grade, receptor expression 
and tumour subtype that informs treatment and prog-
nosis. A biomarker that could be added to this standard 
analysis would be a valuable addition to current practice 
[12]. We validated the specificity of the CITED1 antibody 
previously [13, 14] and a TMA analysis served both to 
evaluate the feasibility of immunohistochemistry and to 
determine if the correlation seen with CITED1 mRNA 
and favourable prognosis was sustained. The TMA has 
been previously described and consists of approximately 
400 breast tumours with long term follow up [15]. Using 
comparable parameters to the GOBO analysis (tamox-
ifen-treated/ER+) we found that relapse-free (RFS) and 
disease-specific survival (BCSS) was significantly better 
for patients with higher expression of CITED1 (Fig.  2a, 
b). Examining tamoxifen-treated, ER+/LN− yielded very 
few patients although the difference in survival was still 
apparent (Additional file  1: Fig. S1c). As with GOBO, 
no difference in survival was seen in the tamoxifen-
untreated tumours (Additional file 1: Fig. S1d).

Fig. 1 CITED1 is expressed in cell lines of the ER+ luminal breast cancer subtype and correlates with tamoxifen response in vivo. A GOBO database 
of breast cancer cell lines showing relative expression of CITED1 mRNA ordered by tumour molecular subtypes representation. Luminal—orange, 
Basal A—light blue, Basal B—blue *Misclassified melanoma cell line, MDAMB435 [36]. B CITED1 protein expression is shown in breast cancer cell 
lines representing the different tumour molecular subtypes. β‑actin is used as a loading control. C CITED1 expression in the various molecular 
subtypes represented in the GOBO breast tumour dataset. D CITED1 expression in ER+ and ER− tumours in the GOBO tumour dataset.  E Survival 
analysis showing distant metastasis‑free survival (DMFS) in patients with breast cancer treated with tamoxifen (TAM). Patients were classified into 
3 groups according to expression: high CITED1—orange, medium CITED1—light blue, low CITED1—blue. F Survival analysis for the cohort of ER+/
LN− patients treated with tamoxifen (TAM). The number of patients in each group at diagnosis is indicated as n 

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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A CITED1 anti‑endocrine but not tamoxifen‑specific effect 
is replicated in the TCGA ER+/LN‑ tumours
We used TCGA to try to validate our findings using 
more contemporary data. The TCGA breast tumours 
represent patients with 2009 as their median year of 
diagnosis (range: 1988–2013) and includes several anti-
endocrine (AE) treatments (56% aromatase inhibitors 
(AI), 42% tamoxifen). We failed to see an association in 
tamoxifen-only treated patients (Additional file  1: Fig. 

S1e) but CITED1 expression was significantly associated 
with favourable outcome when we extended the analy-
sis to include all AE, or AI-only treatment, specifically 
in the ER+/LN− cohort (Fig.  2c, d). This underscored 
the ability of CITED1 to risk-stratify patients receiving 
AE-treatment in a third independent dataset. One obvi-
ous difference between the datasets, which may in part 
explain the discrepancy, is that 71% of the TAM-treated 
tumours in the GOBO data were ER+/LN− at diagnosis, 

Fig. 2 Correlation of CITED1 protein (TMA) and gene expression (TGCA) with prognosis following anti‑endocrine treatment. For the TMA analysis, 
patients were classified into 2 groups either as having low (negative/faint: blue line) or high (moderate/strong: orange line) CITED1 protein 
expression following IHC; A Relapse‑free survival (RFS) following breast cancer diagnosis in the ER+ , TAM‑treated cohort. B Breast cancer specific 
survival (BCSS) following diagnosis in the ER+ , TAM‑treated cohort. The number of patients in each group at diagnosis is indicated in brackets. 
TCGA was used for validation of differential CITED1 gene expression (high expression: orange line, low expression: blue line) and its association with 
prognosis; C Relapse‑free survival in all ER+/LN− TCGA breast tumours following any anti‑endocrine (AE) treatment. D Relapse‑free survival in the 
ER+/LN− breast tumours treated with aromatase inhibitors (AI). The number of patients in each group at diagnosis is indicated in brackets
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compared with only 35% of the TCGA TMA-treated 
tumours. Additionally, very few events occurred in the 
TCGA TAM-treated ER+/LN− cohort (Additional file 1: 
Fig. S1f ). Furthermore, GOBO patients received a mean 
2 years (range: 1–7) of treatment, as opposed to the cur-
rent guideline recommendation of 5, with extension up to 
10 years [16, 17]

If AI-treatment response is affected, this suggests a role 
for ERα-CITED1 complex formation even in an estrogen-
depleted environment. The availability of CITED1 may 
function to oppose mechanisms of AI resistance that dis-
rupt normal ERα-signalling or trigger ligand-independ-
ent activation. Induction of ERα adaptive hypersensitivity 
to residual estrogen by AE/AI treatment is thought to 
be mediated by various growth factor signalling path-
ways, which in turn can alter the genome-wide binding 
pattern of ERα via posttranslational modifications. This 
implies the availability of specific co-factors may be of 
paramount importance to hold aberrant ERα-signalling 
in check [18].

Selective CITED1‑dependant AREG expression in MCF7 breast 
cancer cells
In the murine mammary gland, gene expression profil-
ing of the CITED1-knockout mouse revealed dysregu-
lation of several ERα-responsive genes [3]. A major 
driver of the process of pubertal mammary epithe-
lial outgrowth, downstream of ERα-CITED1, is the 
EGFR-ligand, amphiregulin (AREG) [3, 19]. AREG is 
selectively overexpressed at the initiation of pubertal 
expansion and reduced in the CITED1-null mammary 
epithelium concomitant with retarded ductal out-
growth [3, 5].  Furthermore, AREG has been identified 
as a downstream effector of estrogen in ERα+ breast 
cancer and its expression is necessary for the growth 
of MCF7 xenografts [20]. We wanted to examine if 
ERα-AREG signalling is also CITED1-mediated in 
breast cancer cells and the relatively low levels of 
CITED1 in MCF7s compared to other luminal-types 
made them ideal for development of a CITED1-over-
expression model (Figs. 1b, 3a, b). We found increased 
expression of AREG, mRNA and protein, in MCF7 
cells stably overexpressing CITED1; both basal expres-
sion and transcriptional response to estrogen treat-
ment (Fig.  3c, e, f ). In agreement with our previous 
observations, manipulation of CITED1 levels did not 
simply lead to a general enhancement of transcription 
of estrogen responsive genes as evidence by the lack 
of effect on TGFα (Fig. 3d) [3]. These results serve as 
a proof-of-concept that selective signalling pathways 

driven by ERα-CITED1 in human breast cancer cells 
mirror those driving murine mammary gland out-
growth. AREG has been previously associated with AI-
resistance in vitro due to growth inhibition escape by 
activation of EGFR [21]. We hypothesise however, that 
in luminal-type/ER+/LN− breast cancer, AREG 
expression downstream of ERα-CITED1 may be asso-
ciated with an active ERα-coregulator complex that is 
more amenable to endocrine antagonism. We theorise 
that an active ERα-CITED1-AREG response acts a sur-
rogate for intrinsic estrogen and AE sensitivity and 
that CITED1-mediated ERα-transcription is central to 
the AE response.

Targeting coregulators in disease has for many years 
been seen as attractive due to the potential advantage of 
altering specific transcriptional programmes while leav-
ing other key signalling nodes intact[22–26]. The poten-
tial for future therapeutic targeting of CITED1 is further 
strengthened by recent developments of co-regulator 
interference/manipulation by peptides, such as a PELP-
derived peptide targeting ERα signalling and a CITED2-
derived peptide which interferes with HIF1α/p300 
interaction [27, 28].

Limitations

• Interrogation of newer, larger datasets and prospec-
tive studies will be required to evaluate if CITED1 
can provide unique or additional diagnostic or prog-
nostic information.

• We have not examined the role of (neo-)adjuvant 
chemotherapy in the low-risk group identified by 
CITED1. Given the more widespread use of pre-
diction tools to limit unnecessary chemotherapy 
(Oncotype DX, MammaPrint etc.) it is of interest to 
investigate if CITED1 expression may identify those 
patients that would benefit less from more aggres-
sive, extended, or consecutive AE treatments.

• We used the differential response of AREG and TGFα 
to confirm our hypothesis that CITED1 could affect 
ERα target genes in human breast cancer cells. A 
more extensive/transcriptome-wide analysis would 
provide the possibility to select for a gene set reflect-
ing a prognostically favourable active ERα-CITED1-
driven expression signature and expand the bio-
marker potential of our observation [29].

• We have not explored and cannot accurately define, 
the functional significance of the AREG protein 
downstream of ERα-CITED1 more than to say its 
expression is increased. We detected increased levels 
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of a ~ 28KDa form, likely representing a cell surface 
N-terminal proteolytic cleavage product. However, 
the functional significance of this is unclear as several 
cell-surface and soluble forms can result from the 
processing of the AREG pre-protein to the cleaved 

biologically active ligand [30]. Further investigation 
is outside the scope of this study but the importance 
of AREG protein cleavage has been addressed else-
where [31, 32].

Fig. 3 CITED1 overexpression alters expression of amphiregulin. A Characterization of CITED1 (28 kDa) and ERα (66KDa) protein expression in stable 
CITED1‑overexpressing MCF7 cells compared to the empty vector (EV) control following passage (P) under selection (G418 antibiotic). β‑tubulin 
(55 kDa) is used as a loading control. B CITED1 concentration, relative to a IPO8 control, in stable CITED1‑overexpressing MCF7 cells (orange) 
compared to the empty vector control (blue) in response to estrogen stimulation (E2), tamoxifen (TAM) or simultaneous (E2/TAM) treatment. C, D 
Concentration of AREG and TGFα relative to a IPO8 control is shown in stable CITED1‑overexpressing MCF7 cells (orange) compared to the stable 
empty vector control (blue). The response to estrogen stimulation (E2), tamoxifen (TAM) or simultaneous (E2/TAM) treatment is shown. E AREG 
protein expression in stable CITED1‑overexpressing MCF7 cells compared to the empty vector (EV) control following passage under selection. The 
most intense band signal for AREG was just over the 25KDa marker which would likely correspond to the previously reported 26‑28KDa cell surface 
form [30]. Total protein staining is used as a loading control. F AREG protein expression in stable CITED1‑overexpressing MCF7 cells compared to the 
empty vector (EV) control in response to estrogen stimulation (E2), tamoxifen (TAM) or simultaneous (E2/TAM) treatment. Total protein staining is 
used as a loading control
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Methods
Cell lines
Cells were obtained from ATCC and grown in accordance 
with recommendations. Transfections were performed 
using Lipofectamine2000 and Opti-MEM reduced serum 
media (Life Technologies). CITED1 was overexpressed 
using a pCMV6 containing human CITED1, transcript 
isoform 1 (pCMV6-CITED1, Origene, #PS100001). An 
empty vector, CMV6 expression plasmid was used as the 
negative control (pCMV-EV, Origene, #RC202419). Sta-
ble cell lines were established through antibiotic selection 
using G418 1 mg/ml (A1720 Sigma-Aldrich).

Drug treatment
β-E2(#E8875, Sigma) was used at 10 nM–100 nM, TAM 
(#H7904, Sigma) was used at 1 µM. Before 3 h drug stim-
ulation, cells were starved for 24  h in phenol-red free 
medium containing 5% charcoal-treated FBS (HyClone). 
Cells were lysed with BufferRLTplus (RNeasy®plus Mini 
Kit, Qiagen), supplemented with 1% β-mercaptoethanol 
for subsequent RNA isolation. Whole cell lysates for pro-
tein analysis were taken in parallel.

Immunoblotting and IHC
Anti-CITED1 (rabbit, #AB15096, Abcam); anti-ERα (rab-
bit, #8644, Cell Signalling); anti-ERα (mouse, Abcam), 
anti-β-Actin (AC-15), #A5441 from Sigma-Aldrich, anti-
Amphiregulin (goat, R&D Systems #AF262). Lysates were 
resolved by SDS-PAGE (4–20% pre-cast, stain-free, Bio-
Rad) and transferred to PVDF membranes. The mem-
branes were blocked (5% non-fat milk/TBST) prior to 
incubation with diluted primary antibodies (2.5% non-
fat milk/ TBST). The blots were probed with appropriate 
diluted secondary antibodies (5% non-fat milk/TBST) 
(Pierce Biotechnology). Membranes were cut according 
to size prior to antibody incubation but where proteins 
had similar molecular weights, blots were run separately 
(Additional file  2). Membranes were developed using 
ECL (Bio-Rad). The TMA was processed as previously 
described [15]; A 2-group combined CITED1 scoring 
system reflecting cytoplasmic staining fraction and stain-
ing intensity was used.

Data analysis and statistics
Data analysis was performed using R v 4.2.1 with rel-
evant packages; see https:// github. com/ Coreg ulomi csU-
nit/ CITED1_ BC for further details on data extraction 

and processing. Briefly, gene expression and clinical 
data from ProjectID: TCGA-BRCA were downloaded 
from https:// portal. gdc. cancer. gov, accessed using 
TCGABiolinks [33]. Log transformed, batch corrected 
(using  TCGAbatch_Correction function) gene expres-
sion  data log2(TPM + 0.1)  was used  for survival analy-
sis [34]. TCGA-BRCA patients were stratified into two 
groups based on CITED1 expression (cut-off: median). 
The same survival package was used for analysis of both 
TMA and TCGA cohorts; p-values were determined 
using the logrank test [35].

Droplet digital PCR
RNA was isolated using Qiagen RNeasy Plus mini-kit 
and quantified using Nanodrop (ThermoScientific). 
cDNA was generated using ‘iScript Advanced cDNA 
synthesis for RT-qPCR’ (Bio-Rad). Bio-Rad’s ‘ddPCR 
Supermix for Probes’ was used with predesigned 
TaqMan assays (Applied Biosystems) consisting of spe-
cific primers and FAM/VIC labelled probes for CITED1 
(#Hs00918445_g1), IPO8 (#Hs00183533_m1), AREG 
(Hs00950669_m1), TGFα (Hs00608187_m1); run on 
the Bio-Rad QX200 instrument. A manual cut-off for 
positive droplets was selected using the Bio-Rad Quan-
taSoft™ data analysis suite to calculate the copies/µl of 
each transcript relative to the internal IPO8 control.

Abbreviations
P300  Previously EP300
CBP  Previously CREB‑binding protein
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ERα  Estrogen receptor alpha
ESR1  Estrogen receptor alpha gene
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TGFα  Transforming growth factor alpha
AREG  Amphiregulin
TAM  Tamoxifen
TMA  Tissue microarray
IHC  Immunohistochemistry
GOBO  Gene Expression Based Outcome for Breast Cancer Online
TCGA   The Cancer Genome Atlas
AE  Anti‑endocrine
AI  Aromatase inhibitor
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Additional file 1: Figure S1. A Expression of the estrogen receptor gene, 
ESR1, does not determine outcome (DMFS) in the subset of tamoxifen 
(TAM) treated ER + /LN‑ tumours in the GOBO dataset. B CITED1 expres‑
sion in the cohort of untreated tumours (No TAM) in the GOBO dataset is 
not associated with better prognosis. Patients are classified into 3 groups 
according to expression (high CITED1—orange, medium CITED1—light 
blue, low CITED1—blue) and the number of patients in each group at 
diagnosis is indicated as n. C CITED1 protein expression is not associ‑
ated with survival in untreated (No TAM) tumours in the TMA dataset. D 
CITED1 protein expression is associated with increased survival in the 
ER+/LN−tamoxifen (TAM) treated cohort of TMA tumours. Patients are 
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classified into 2 groups either as having low (negative/faint: blue line) or 
high (moderate/strong: orange line) CITED1 protein expression following 
IHC and the number of patients in each group at diagnosis is indicated 
in brackets. E CITED1 expression in TCGA breast cancer dataset is not 
associated with increased relapse‑free survival in tamoxifen (TAM) treated 
tumours. F CITED1 expression in TCGA breast cancer dataset is not associ‑
ated with increased relapse‑free survival in ER+/LN− tamoxifen (TAM) 
treated tumours. Patients are classified into 2 groups (high expression: 
orange line, low expression: blue line) and the number of patients in each 
group at diagnosis is indicated in brackets.

Additional file 2: Figure S2. Extended and uncropped blot images, lad‑
der markers and total protein controls. A Uncropped images of the CITED1 
blots in Fig. 1b showing the edges of the X‑ray film. B The molecular 
weight markers routinely used in the lab and the standard cutting pattern 
of the membranes prior to incubation with antibodies. C Extended and 
overexposed images of the blots in Fig. 3a. Due to the strong ECL signal 
even long exposure did not reveal other bands. The membrane edges are 
visible only with extreme over exposure for CITED1, ER‑α and β‑tubulin. 
An additional protein loading control is provided. Note that only the first 
4 lanes are shown in Fig. 3a. D Extended image of the AREG blot in Fig. 3e 
with ladder bands visible. An extended protein loading control is also 
shown with visible ladder markers. E Extended image of the AREG and 
ER‑α blots in Fig. 3f. For ER‑α, a long exposure is provided as well as an 
image of the membrane whole molecular weight markers to illustrate the 
size of the cut membrane. The molecular weight ladder bands are visible 
on the AREG blot. An extended protein loading control is also shown with 
visible ladder markers.
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