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biosynthesis and its regulation are among the best stud-
ied processes in plants. Numerous studies are published 
every year which investigate the flavonoid biosynthe-
sis and the corresponding regulators in different plant 
species.

One of the best studied enzymes in the flavonoid bio-
synthesis pathway is the chalcone synthase (CHS). This 
enzyme catalyzes the first committed step of the flavo-
noid biosynthesis, particularly the reaction leading to the 
formation of the naringenin chalcone from one p-cou-
maroyl-CoA and three malonyl-CoA [4]. CHS belongs to 
the type III polyketide synthases, a larger protein family 
that also harbors several closely related enzymes like the 
stilbene synthase (STS) [5]. CHS and STS differ by only 
two functionally important residues which are Q166 and 
Q167 in the Arabidopsis thaliana CHS sequence [6]. 
The gene structure of CHS comprises usually two coding 
exons [7].

Introduction
Flavonoids are one of the most important groups of 
specialized plant metabolites. Their enormous chemi-
cal diversity results in a plethora of biological functions 
[1]. Most noticeable are the anthocyanins which can 
provide blue to red coloration to flowers. Flavonoids are 
distributed across the whole plant kingdom. Given the 
visual phenotype of several flavonoids, this pathway was 
established as a model system for plant metabolism and 
transcriptional regulation [2, 3]. Today, the flavonoid 
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Abstract
Objective Chalcone synthase (CHS) catalyzes the initial step of the flavonoid biosynthesis. The CHS encoding gene 
is well studied in numerous plant species. Rapidly growing sequence databases contain hundreds of CHS entries that 
are the result of automatic annotation. In this study, we evaluated apparent multiplication of CHS domains in CHS 
gene models of four plant species.

Main findings CHS genes with an apparent triplication of the CHS domain encoding part were discovered through 
database searches. Such genes were found in Macadamia integrifolia, Musa balbisiana, Musa troglodytarum, and 
Nymphaea colorata. A manual inspection of the CHS gene models in these four species with massive RNA-seq data 
suggests that these gene models are the result of artificial fusions in the annotation process. While there are hundreds 
of seemingly correct CHS records in the databases, it is not clear why these annotation artifacts appeared.
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Numerous plant genomes are sequenced every year [8] 
and the rapid development of long read sequencing tech-
nologies enables the generation of high quality genome 
sequences [9]. Since an automatic annotation of all genes 
in the flavonoid biosynthesis and many regulators is pos-
sible [10, 11], it is feasible to perform large scale analyses 
of gene families acting in this pathway. Analyses at this 
scale are inherently prone to errors concerning individual 
species and sequences that require human intervention 
at the final interpretation step. A systematic analysis of 
domains in the chalcone synthase revealed an apparent 
triplication in several species.

Here, we describe an investigation of several CHS gene 
models that appeared to encode a protein with a tripli-
cated CHS domain. A manual inspection of multiple 
cases based on transcriptomic data suggests mis-annota-
tion leading to artificially fused gene models.

Main text

Methods
Identification of sequences with potential CHS domain 
duplications
A BLASTp analysis with the Nymphae colorata 
CHS (XP_049936683.1) as query and nr (contain-
ing 545,546,009 sequences) as subject was performed 
through the NCBI webportal (https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PAGE=Proteins) on the 2nd of June 2023. 
The word size was set to 5 and an e-value cutoff of 10–30 
was applied. Matched sequences longer than 500 amino 
acid residues were manually screened for CHS domain 
duplications or triplications. Redundant sequences were 
removed from the list.

Evaluation of gene models via RNA-seq read mapping
The genome sequences and corresponding annotations 
of four species with apparent fusion of multiple CHS 
gene copies were selected for manual inspection: Musa 
balbisiana [12], Musa troglodytarum [13], Macadamia 
integrifolia [14], and Nymphaea colorata [15]. All avail-
able paired-end RNA-seq data sets of these species were 
retrieved from the Sequence Read Archive via fastq-
dump [16] (Additional File 1 in [17]). Read pairs were 
aligned to the genome sequence with STAR v2.5.1b [18, 
19] in 2-pass-mode using a minimal similarity of 95% 
and a minimal alignment length of 90% as previously 
described [20]. The resulting BAM files were processed 
with customized Python scripts [17]. All reads mapped to 
the locus of interest were extracted from each individual 
BAM file with samtools v1.15.1 [21]. These subset BAM 
files were merged to produce one BAM file per species 
that contains all reads belonging to the locus of interest 
(Additional File 2, Additional File 3, Additional File 4, 

Additional File 5 in [17]). The final BAM file was visual-
ized with Integrative Genomics Viewer (IGV) [22].

Analysis and visualization of RNA-seq read mapping 
coverage
A previously developed [23] Python script was applied to 
convert BAM files into coverage files that list the num-
ber of aligned reads per genomic position. These cover-
age files served as the basis for the generation of gene 
model-focused coverage plots [17]. These plots visualize 
the number of aligned reads per position around a given 
locus of interest. High coverage with RNA-seq reads 
indicates exon positions while introns are characterized 
by very low or no RNA-seq read coverage at all. Introns 
are not included in the final mRNAs and usually mostly 
mature mRNAs are extracted with standard RNA extrac-
tion protocols used for RNA-seq experiments.

Comparison of sequence similarity
Sequences around the CHS loci of interest were retrieved 
from the respective genome sequence using the Python 
script seqex3.py v0.5 [24]. Sequence similarity between 
the different domains predicted in the inspected 
sequences was analyzed by constructing dot plots with 
dotplotter v0.1 [25] using a k-mer size of 31. Dotplot-
ter compares two sequences by generating k-mers from 
one given sequence and identifying matches in the other 
sequence. The corresponding k-mer positions in both 
sequences are visualized in a dotplot. This allows an intu-
itive visualization of repeats.

Results
An analysis of the CHS sequences retrieved from the 
NCBI revealed apparent fusion proteins harboring mul-
tiple (two or three) CHS domains in 28 protein sequences 
across different plant species (Additional File 6 in [17]). 
More specifically, 8 sequences showed a triplication of 
the CHS domain, while 20 sequences showed a dupli-
cation. Representative examples of predicted proteins 
with multiple CHS domains were identified in Macada-
mia integrifolia, Musa balbisiana, Musa troglodytarum, 
and Nymphae colorata (Fig.  1). A comparison of each 
CHS locus in the four species against itself revealed the 
expected high similarity (Additional File 7 in [17]).

Loci with an unexpected CHS annotation were 
inspected in an RNA-seq read mapping (Fig.  2). The 
annotation indicates a single CHS gene encoding three 
CHS domains, but the results of our RNA-seq read 
mapping suggest that there are multiple individual CHS 
genes. The coverage continuously drops towards the 
ends of several exons. That is an indication of the end of 
a gene. In contrast, an abrupt drop in coverage to almost 
zero would indicate a splice site. There are almost no con-
necting reads between some of the annotated exons and 
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individual exons show very different RNA-seq coverage. 
There are also substantial fractions of annotated exons 
without RNA-seq support. It is not expected that exons 
at the 5’- and 3’-end of a gene have high coverage, while 
the enclosed exons have low coverage. The underlying 
RNA-seq read mapping files of Macadamia integrifolia 
(Additional File 2 in [17]), Musa balbisiana (Additional 
File 3 in [17]), Musa troglodytarum (Additional File 4 in 
[17]), and Nymphae colorata (Additional File 5 in [17]) 
are available for in depth inspection. Detailed instruc-
tions are provided to enable researchers to perform a 
similar investigation of other cases of potential annota-
tion artifacts [17].

Discussion
We outlined how surprising results of a quick database 
search and in-depth inspection of these entries resulted 
in the identification of most likely annotation artifacts. 
We investigated the assembly and annotation process 
underlying the annotations of the four analyzed species. 
The Macadamia integrifolia assembly was produced with 
MaSuRCA v3.2.6 and ALLMAPS v.Jul-2019 [14, 26, 27]. 
The Musa balbisiana and Musa troglodytarum genome 
sequences were assembled with wtdbg v1.2.8 and Next-
Denovo v2.4.0, respectively [12, 13, 28, 29]. The Nym-
phae colorata assembly was produced by Canu v1.3 [15, 
30]. All these assemblers are well established tools that 

have been deployed in numerous plant genome sequenc-
ing projects. The annotation was produced by Gnomon 
[31] which is the default annotation pipeline operated at 
the NCBI. There is no indication how any of these steps 
could have caused the mis-annotation. Gnomon was also 
applied on many other plant genome sequences and usu-
ally generated CHS annotations comprising only a single 
CHS domain [32–34]. The repetitive regions with mul-
tiple CHS copies in an array might contribute to the mis-
annotation as suggested for repeats before [35].

To the best of our knowledge, there are no reports that 
validated a CHS protein with multiple repeated domains. 
Despite all efforts, it might not be possible to automati-
cally maintain a perfect database free of any mis-annota-
tions. Despite technological advances, manual inspection 
and correction might be required in some cases [36]. 
Swiss-Prot is an initiative to establish a collection of 
sequences that were curated by experts [37, 38]. However, 
such a manual inspection is not a scalable approach given 
the rapid growth of sequence collections due to improved 
sequencing technologies [8, 9]. As most records in the 
database are likely correct, users should carefully inspect 
any substantially deviating records. Especially sequences, 
which appear as exciting discoveries, should be consid-
ered as suspicious and thorough inspection is required.

Unexpected sequences should be carefully checked, 
because annotation artifacts are more likely than striking 

Fig. 1 Domain composition of protein sequences with apparent CHS domain triplication. CHS abbreviation in figure stands for Chalcone synthase do-
main, and Cond abbreviation stands for Chalcone and stilbene synthases, N-terminal domain. So-called catalytic triad consisting of conserved Cysteine (C), 
Histidine (H), and Asparagine (N) amino acid residues is always depicted (if preserved)
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Fig. 2 RNA-seq read coverage of CHS loci in Macadamia integrifolia(A), Musa balbisiana(B), Musa troglodytarum(C), and Nymphae colorata(D). The annota-
tion suggests that a single gene is spanning the entire displayed locus, but the continuously dropping coverage towards the end of exons (black lines) in 
our RNA-seq read mapping suggests that there are multiple individual genes
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differences between closely related species. We describe 
our strategy for the gene model investigation in detail to 
enable repetition by others [17].

(1) A comparison with orthologs in many other 
species is often a way to identify unexpected 
sequence properties. Sequences should only differ 
systematically if there are particularly striking events 
during evolution. If such events are not known, any 
major sequence differences could point to artifacts 
and should be considered as such.

(2) Generally, the alignment of RNA-seq reads or 
other types of transcriptomic evidence should be 
used to gain insights into the structure of genes. 
It is important to use a proper split read aligner 
like STAR [18, 19] or HISAT2 [39] for this step. 
The coverage should be consistent or should drop 
continuously towards the ends of a gene. Splice sites 
within a gene are characterized by abrupt changes 
of the coverage to almost zero. In addition, introns 
should be spanned by a number of reads that is 
almost equivalent to the coverage at the border of the 
flanking exons.

(3) If no suitable datasets are available, it is also possible 
to validate the gene structure and sequence through 
amplification via RT-PCR followed by Sanger 
sequencing [40]. As this approach is more time 
consuming and requires more financial resources, 
the aforementioned data-reuse approaches should be 
applied first.

Limitations
Our investigation was restricted to four examples of 
apparent CHS domain triplication events within a single 
CHS gene in four different plant species. The gene mod-
els in question were contradicted by the analyzed RNA-
seq datasets. However, we cannot rule out the possibility 
that such modified CHS versions exist elsewhere.
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