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Introduction
The tarnished plant bug (TPB), Lygus lineolaris (Palisot 
de Beauvois) (Hemiptera: Miridae), has a broad host 
range exceeding 300 plant species including a large num-
ber of cultivated crops in the United States [1, 2]. TPB 
has five nymphal stages and the ovipositor in the cen-
ter of abdominal sternites in adult females can distin-
guish females from males (Supplementary Fig. S1). TPB 
is present in the continental United States, Canada, and 
Mexico. This pest causes significant economic damage to 
a diversity of vegetable crops, fruits, and nursery stock 
including strawberries, cotton, and seedlings of conifers 
[3–7]. In 2020, TPB infested more than 4.8 million acres 
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Abstract
Objective The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a pest 
damaging many cultivated crops in North America. Although partial transcriptome data are available for this pest, a 
genome assembly was not available for this species. This assembly of a high-quality chromosome-length genome of 
TPB is aimed to develop the genetic resources that can provide the foundation required for advancing research on 
this species.

Results The initial genome of TPB assembled with paired-end nucleotide sequences generated with Illumina 
technology was scaffolded with Illumina HiseqX reads generated from a proximity ligated (HiC) library to obtain a 
high-quality genome assembly. The final assembly contained 3963 scaffolds longer than 1 kbp to yield a genome 
of 599.96 Mbp. The N50 of the TPB genome assembly was 35.64 Mbp and 98.68% of the genome was assembled 
into 17 scaffolds larger than 1 Mbp. This megabase scaffold number is the same as the number of chromosomes 
observed in karyotyping of this insect. The TPB genome is known to have high repetitive DNA content, and the 
reduced assembled genome size compared to flowcytometric estimates of approximately 860 Mbp may be due to 
the collapsed assembly of highly similar regions.
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of cotton resulting in an estimated $157 million in con-
trol costs and yield losses [8]. Current control of TPB in 
cotton is carried out almost exclusively using synthetic 
insecticide sprays. Formulations and mixtures of insec-
ticides including carbamates, organophosphates, nico-
tinamides, neonicotinoids, and pyrethroids are routinely 
used along with an insect growth regulator (novaluron) 
to manage TPB in commercial agriculture. A systemic 
insecticide (sulfoxaflor) is permitted under special condi-
tions to manage TPB in cotton. Insecticide resistance in 
the TPB has been reported in the Mississippi Delta since 
1995 [9–11]. As in the case of many insects, the suscep-
tibility of TPB to different chemicals within three major 
classes of insecticides (carbamate, organophosphate, and 
pyrethroid) commonly used for pest control in cotton has 
varied over the past forty years [12]. Most insecticides 
that previously provided good control of TPB currently 
exhibit diminishing effectiveness [13, 14].

Resistance to insecticides may develop by breaking 
down of the insecticides through a range of mechanisms: 
by increased levels or enhanced activity of detoxifying 
enzymes (metabolic resistance), by resisting the bind-
ing of the chemical through genetically modified target 
sites (target-site resistance), by changing the properties 
of the exoskeleton to reduce the rate of penetration of 
contact insecticides (penetration resistance), or through 
behavioral resistance by developing the ability to detect 
insecticides and avoid exposure [15–18]. These adapta-
tions reflect shifts in frequencies of alleles responding 
to changing environmental conditions by substituting 
genes in populations over time [19, 20]. These shifts in 
allele frequencies of genes responding to environmental 
factors can be identified by monitoring the populations 
using genetic markers. The number of insect popula-
tion genomic studies has rapidly increased recently due 
to the availability of genomic data and cost-effective, 
high throughput sequencing methods used to gener-
ate data [reviewed in: 21, 22]. Navel orangeworm, Amy-
elois transitella [23], brown planthopper, Nilaparvata 
lugans [24], and Asian tiger mosquito, Aedes albopictus 
[25], for example, are among the subjects of a growing 
number of recent population genomic studies. However, 
lack of genome sequence data has precluded population 
genomic studies of Lygus species.

Despite TPB being a pest of several economically 
important crops grown in North America, apart from 
a few population genetic and transcriptome and gene 
expression studies, there is a general paucity of research 
on the genetics of TPB [26–31]. Therefore, the develop-
ment of a comprehensive set of genetic resources includ-
ing a high-quality genome, full transcriptome with an 
official gene set that identifies all isoforms, and genetic 
markers suitable for population genomic and quantitative 
genetic studies is needed for this species. Community 

insect genomics initiatives like the i5k consortium [32] 
and more recently Ag100Pest [33] and AgriVectors [34] 
have also highlighted the far-reaching consequences and 
benefits of creating reference-grade genomics resources 
and building open access tools to make them available 
[34, 35]. Our goal for sequencing the genome of TPB was 
to develop these genetic resources that will significantly 
advance genetics research on TPB. This will allow us to 
identify the candidate detoxification gene repertoire and 
genetic polymorphisms required for genetic mapping 
and ecological genetic studies in the TPB.

Results and discussion
The Meraculous Assembler [36] estimated the genome 
to be approximately 800  Mb. The scaffolded Illumina-
only assembly with two Illumina libraries followed by 
a round of scaffolding with a third Illumina library was 
599.96 Mb with a N50 of 19.8Kb and L50 of 7.1Kb. The 
total coverage of the L. lineolaris genome by the three 
Illumina paired-end libraries was 240X. Long range Hi-C 
scaffolding connected the scaffolds from the Meraculous 
assembly to create the final assembly with 3963 scaffolds 
with an N50 of 35.64 Mbp and a total length of 600 Mb 
(Fig. 1). This assembly contains 80 Mb of Ns with 13.4Kb 
of Ns per 100Kb of genomic sequence. Accession num-
bers for genome sequence data are given in the Table 1. 
This whole genome sequencing project has been depos-
ited at DDBJ/ENA/GenBank under the accession JAE-
MON000000000. The version described in this paper is 
version JAEMON010000000.

BUSCO [37] evaluation of the completeness of the 
Illumina and Hi-C assemblies based on the Hemipteran 
(2510) and Arthropoda (1013) marker sets indicated that 
the Hi-C scaffolded assembly improved over the short-
read Illumina assembly with an 85.1% of the complete 
assembly. Only 5.6% of the 1013 Arthropoda BUSCO 
markers missing (Table 2).

The TPB has 17 chromosome pairs [38] and the 17 
largest scaffolds with lengths of more than 1  Mb might 
represent the 17 chromosomes in the TPB. The GC per-
centage of 42.7% is higher than the pea aphid (29.6%) and 
honeybee (38.8%). Flow cytometry analysis of tissue from 
the heads of male and female TPB resulted in a genome 
size estimate of 816.6 +/- 2.6 Mb and 869.1 +/- 4.3 Mb, 
respectively, which is larger than the currently assembled 
reference assembly (Supplementary Fig. S2).

High repetitive content in the genome may have sub-
stantially reduced the genome size by the collapse of 
repetitive regions during the assembly process. We 
applied two approaches to identify repeats in the genome. 
The TPB genome assembly was searched for known 
repeat families in the order insecta present in the DFAM 
2.4 database [39] (Supplementary data Table S1) but this 
resulted in the annotation of only 3.8% of the genome. 
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RepeatModeler (http://www.repeatmasker.org/) identi-
fied 4281 RepeatScout/RECON families and 99 L repeat 
families with primarily Gypsy/DIRS1 elements. All anno-
tations are available at the AgriVectors portal [34] public 
database.

Public databases currently list 2,191 and 1,552 nucleo-
tide and protein sequences, respectively, for TPB. In 
addition, 8 Bioprojects, 21 Biosamples, and 17 popula-
tion sets are available on the National Center for Bioin-
formatics (NCBI) database. Four of the eight Bioprojects 
were submitted by the USDA ARS Southern Insect 
Management Research Unit, including the TPB genome 
projects (PRJNA589321 and PRJNA685878) and three 

transcriptomics projects. We have published RNASeq 
data from the gut and salivary glands of TPB [26] and 
two other partial transcriptomes of TPB have been pub-
lished previously [29, 40]. A high-quality genome with 
chromosome size scaffolds will facilitate the develop-
ment of universal markers for mapping genomic loci 
associated with host selection, insecticide resistance, 
and population genomic studies. A chromosomal-length 
genome with annotations from NCBI will provide an offi-
cial gene set to identify isoforms and study differential 
gene expression under various physiological conditions 
such as response to pesticides. The mapping of genomic 
DNA sequences to the published mitochondrial genome 

Fig. 1 Linkage density histogram of Lygus lineolaris genome assembly generated from HiC read pairs. The first and second read in a read pair grouped 
into bins is plotted in the x and y axes, respectively. The intensity of color of each square represents the number of read pairs in each bin. Scaffolds smaller 
than 1 Mb were not used in this histogram
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(accession: NC_021975) of TPB from the northern USA 
identified 34 nucleotide substitutions and three inser-
tions in the protein-coding, rRNA, and tRNA genes of 
the mitochondrial DNA sequences of TPB from Missis-
sippi. All variant positions, except five single nucleotide 
variants, were homozygous in southern TPB population.

Filtering of mapped reads identified 842,044 SNPs that 
were heterozygous in the reads mapped to the largest 
18 scaffolds. Flanking sequences, allele-specific primers, 
and locus-specific primers developed for the manually 
selected SNPs are shown in the supplementary data Table 
S2.

Combined genomic and transcriptomic data (RNA-
Seq + gDNA + BAC = 3,335,989,518 reads) will facilitate 
identifying non-transcribed genomic regions and regula-
tory sequences influencing gene expression. In addition, 
minor effect genes that are coregulated with major effect 
genes can be identified using expression profiles and gene 
coregulatory network analysis [41].

Methods
TPB collected from field locations in Stoneville, MS were 
mated as single pairs to obtain progeny that were used 
to establish a colony inbred for five generations. DNA 
extracted from adult females from the inbred colony 
was submitted to Dovetail Genomics (Scotts Valley, CA) 
for library construction and genome sequencing. Illu-
mina paired-end short reads (2 × 150 bp) were generated 
from a Chicago library made from TPB genomic DNA. 
Sequencing adapters and low-quality reads were removed 
before assembly using Trimmomatic [42]. All bases with 
quality scores lower than Q20 were removed from the 
leading and trailing ends and the middle of the reads.

A Dovetail Omni-C library was prepared as described 
in Saha et al. 2022 [43]. Briefly, chromatin was fixed in the 
nucleus by immersing the tissues in formaldehyde. Ends 
of DNAse I digested chromatin were repaired followed 
by ligation to a biotinylated bridge adapter. The adapter 
containing ends were proximity ligated and the cross-
links were reversed before the DNA was purified. Bio-
tin not internal to ligated fragments were removed and 
the sequencing libraries containing Illumina-compatible 
adapters were generated using NEBNext Ultra reagents. 
Streptavidin beads were used to isolate biotin-containing 
DNA fragments and each library was PCR enriched. Illu-
mina HiSeqX platform was used to sequence the libraries 
to approximately 30x coverage. HiRise, a pipeline specifi-
cally designed to scaffold initial genome assemblies using 
proximity ligation sequence data was used to generate 
final scaffolds using initial assembly and OmniC reads 
[44].

BUSCO version 5.2.2 was used to evaluate genome 
completeness [37]. Dfam TE tools docker container 
(version 1.4) of the RepeatModeler (https://github.
com/Dfam-consortium/TETools) was used to annotate 
repeats. RepeatMasker and RepeatClassifier Version 2.0.2 
(http://www.repeatmasker.org/) was used to classify the 
repeat types in the TPB genome. Dfam 3.4 database was 
used for repeat classification [39].

Table 1 Database accession numbers for nucleotide sequence 
reads and the genome assembly of Lygus lineolaris and the 
supplementary data files deposited in the Figshare database 
(www.figshare.com)
Sample Name Description File 

Type
Accession

DTG_HiC_1196 L. lineolaris Hi-C 
scaffolding 
(Omni-C library)

Single 
Illumina 
miSeq 
reads

SRR13721411

DTG_HiC_1179 L. lineolaris Hi-C 
scaffolding 
(Omni-C library)

Paired-
end 
Illumina 
miSeq 
reads

SRR13721412

DTG-OmniC-56  L. lineolaris Hi-C 
scaffolding 
(Omni-C library)

Paired-
end 
Illumina 
reads

SRR13721413

DTG-OmniC-55  L. lineolaris Hi-C 
scaffolding 
(Omni-C library)

Paired-
end 
Illumina 
HiSeq 
reads

SRR13721414

Index_12.CP-3809  L. lineolaris 
WGS (Chicago 
Library)

Paired-
end 
Illumina 
HiSeq 
reads

SRR13721415

Index_6.CP-3770  L. lineolaris 
WGS (Chicago 
Library)

Paired-
end 
Illumina 
HiSeq 
reads

SRR13721416

CP-2092_S2 L. lineolaris 
WGS (Shotgun 
Library)

Paired-
end 
Illumina 
HiSeq 
short 
reads

SRR13721417

Genome Assembly L. lineolaris draft 
genome assem-
bly version 1.0

Ge-
nome 
as-
sembly 
(Fasta)

PRJNA589321; 
SAMN13280589
PRJNA685878; 
SAMN17087946

Processed Genome 
Assembly

L. lineolaris draft 
genome assem-
bly version 1.0

NCBI 
WGS 
object

JAEMON010000000

Supplementary 
Data Tables

Table S1; Table 
S2

MS 
Excel

DOI:https://doi.
org/10.6084/
m9.figshare.23302250

Supplementary 
Figures

Figure S1, 
Figure S2

Adobe 
PDF

DOI:https://doi.
org/10.6084/
m9.figshare.23313344

https://github.com/Dfam-consortium/TETools
https://github.com/Dfam-consortium/TETools
http://www.repeatmasker.org/
http://www.figshare.com
http://dx.doi.org/10.6084/m9.figshare.23302250
http://dx.doi.org/10.6084/m9.figshare.23302250
http://dx.doi.org/10.6084/m9.figshare.23302250
http://dx.doi.org/10.6084/m9.figshare.23313344
http://dx.doi.org/10.6084/m9.figshare.23313344
http://dx.doi.org/10.6084/m9.figshare.23313344


Page 5 of 6Perera et al. BMC Research Notes          (2023) 16:125 

A published mitochondrial genome of TPB (acces-
sion: NC_021975) [45] was used as the reference to map 
2,723,838,186 Illumina short reads generated by sequenc-
ing initial shotgun libraries and the Hi-C library using 
CLC Genome WorkBench (Qiagen, Redwood City, CA, 
USA). Variant analysis was performed on the mapped 
reads to identify single nucleotide polymorphisms and 
indels between the reference and the reads. Single nucle-
otide polymorphisms (SNP) were identified by filtering 
variants in Illumina reads mapped to the eighteen larg-
est scaffolds using the variant filtering function in CLC 
Genome Workbench. SNPs with at least 60 mapped 
reads with greater than 30% heterozygosity and cover-
age greater than 200 were filtered and exported. A set of 
96 SNPs representing 18 largest scaffolds were manually 
selected to develop an SNP assay panel.

Limitations: Proprietary methods developed by a ser-
vice provider to prepare Genomic DNA library prepara-
tion and assembly are not publicly available. Difference 
between the genome size estimated by flow cytometry 
and the size of the assembled genome may needs to be 
corrected using long read technology.
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