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Objective
The pharmaceutical industry, as one of the largest indus-
tries in the world, seeks on one hand to discover and 
develop new drugs, and on the other hand, to research 
and improve existing drug formulations with optimal 
methods that meet the requirements of treatment and 
disease. Therefore, simplifying and streamlining the pre-
formulation process has become essential and important 
for pharmaceutical experts in this industry [1, 2].

Among the most popular solid dosage forms, including 
capsules and tablets, tablets are the most frequently used 
due to their ease of swallowing [3]. Another significant 
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Abstract
Objectives Tablet manufacturing development is costly, laborious, and time-consuming. Technologies related to 
artificial intelligence like ,predictive model ,can be used in the control process to facilitate and accelerate the tablet 
manufacturing process. predictive models have become popular recently. However, predictive models need a 
comprehensive dataset of related data in the field, due to the lack of a dataset of tablet formulations, the aim of this 
study is to aggregate and integrate fast disintegration tablet’s formulation into a comprehensive dataset.

Data description The search strategy has been prepared between the years of 2010 to 2020, consisting of the 
keyword’s ‘formulation’ ,‘disintegrating’ and ‘Tablet’, as well as their synonyms. By searching four databases, 1503 
articles were retrieved, from these articles only 232 articles met all of the study’s criteria. By reviewing 232 articles, 
1982 formulations have been extracted, afterward pre-processing and cleaning data, contain steps of unifying 
the name and units, removing inappropriate formulations by an expert, and finally, data tidying was done on 
data. The developed dataset contains valuable information from various FDT’s formulations, which can be used in 
pharmaceutical studies that are critical to the discovery and development of new drugs. this method can be applied 
to aggregate datasets from the other dosage forms.
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advantage of tablets is their flexibility in addressing vari-
ous disease conditions. Changes in the composition of 
excipients lead to the production of different tablets with 
different functions. For example, immediate-release tab-
lets or modified-release tablets can be created by altering 
the excipients. According to the United States Pharma-
copeia (USP) definition, immediate-release tablets are a 
type of tablets that, when administered and placed near 
gastrointestinal fluids, disintegrate and release their 
ingredients in less than 3  min. The disintegration time 
test is sufficient to evaluate this type of tablet formula-
tion [4]. The development of this kind of tablet involves 
pre-formulation studies through trial and error, which 
are expensive, time-consuming, and laborious. Moreover, 
these current methods are known to be a source of envi-
ronmental pollution. Executing these experiments has 
become a major challenge for the pharmaceutical indus-
try [1, 2].

In the last decade, there has been a growing use of 
appropriate techniques that employ machine learning 
algorithms to predict formulations in research. Machine 
learning techniques are superior to conventional sta-
tistical methods as they are learnable and can automate 
processes, leading to improved development speed, opti-
mized formulation, and significant cost savings [5]. One 
such technique gaining considerable attention recently 
is deep learning, which is a subfield of machine learn-
ing that trains artificial neural networks to automati-
cally learn and make complex predictions or decisions 
from data. Studies conducted over the years have dem-
onstrated that these algorithms yield better results com-
pared to other machine learning methods in predicting 
the disintegration or dissolution time of tablets, drug 
solubility in water, and the detection of new medicines 
[6–11].

As an example, in study [11], regression models were 
used to predict the correct drug formulation. The study 
introduced a deep neural network trained on two types 
of drug forms: oral fast disintegrating films (OFDF) and 
oral sustained release matrix tablets (SRMT). Addition-
ally, the deep learning method was compared to six other 
machine learning algorithms.

In study [8], deep learning methods (DNN) and artifi-
cial neural networks (ANN) were employed to design a 
quantitative model for predicting the disintegration time 
of oral fast disintegrating tablets using the Direct Com-
pression method.

In study [9], a recurrent neural network was utilized to 
predict molecular properties by examining the solubility 
of the drug in water based on its molecular structure.

The initial step in developing a prediction model 
involves data collection. In this particular case, due to the 
limited availability of a gathered dataset, our study aimed 
to create a dataset by aggregating information from 

articles on fast-disintegrating tablets (FDT) formula-
tions. We believe that this effort is necessary to meet the 
pharmaceutical industry’s needs for automating medici-
nal processes, which require the utilization of machine 
learning techniques, including deep learning, to predict 
the disintegration time of FDT, an important specifica-
tion in pre-formulation studies. Given the requirement 
for a comprehensive dataset, the primary objective of this 
study was to compile data and create a dataset consisting 
of FDT formulations and their corresponding properties 
based on previous studies.

Data description
Given the extensive nature of the pharmaceutical tech-
nologies field and the absence of a comprehensive data-
set encompassing pharmaceutical formulations and their 
corresponding control test values, which is a key require-
ment for developing predictive models, we performed a 
systematic search across four databases. Additionally, the 
selection of tablet pharmaceutical form was based on its 
widespread usage, and within the tablet category, fast-dis-
integrating tablets were chosen. The evaluation of these 
tablets focused on their disintegration time, fragility, and 
hardness, which are considered crucial parameters.

A total of 1,503 articles were retrieved through the 
database search. During the initial review, which involved 
a thorough examination of the articles’ full texts to iden-
tify those that analyzed formulations with the desired 
structural values and characteristics, 726 articles were 
identified. Among these, 193 articles were found to be 
duplicated across multiple databases. Subsequently, 523 
articles proceeded to the next step for a detailed assess-
ment of their full texts, specifically focusing on the inclu-
sion criteria for adding formulations to the dataset. As a 
result, 301 articles did not meet all the inclusion crite-
ria and were subsequently excluded from the study. The 
summarized steps can be visualized in Fig. 1.

After reviewing 232 articles, a total of 1,982 formula-
tions were extracted. An overview of the dataset is pro-
vided in Table 1. The formulation information, including 
the name and content of Active Pharmaceutical Ingre-
dients (API), as well as other excipients, process details, 
and quality control properties, were recorded in the data-
set. Each formulation in the final dataset contains the 
following features: API name, Dose, Amount of Excipi-
ents (each excipient as a separate column), Total Weight, 
Hardness, Friability, Thickness, Wetting Time, Drug Con-
tent, Disintegration Time, Content Uniformity, Water 
Absorption Ratio, Mixing Time, Diameter, Bulk Density, 
Tapped Density, Carr’s Compressibility Index, Hausner 
Ratio, Angle Of Repose, Tablet Porosity, Assay, Moisture 
Content, Dispersion Time, and Cumulative Drug Release.

Currently, tablet manufacturing processes for achiev-
ing the optimal formulation traditionally involve multiple 
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trials and errors, as indicated by existing research. How-
ever, the utilization of deep learning techniques as part 
of the Quality by Design (QBD) principles in the phar-
maceutical industry necessitates a comprehensive data-
base of relevant formulations, which was previously 
unavailable. In this study, we have created a dataset by 
aggregating data to enable advanced analytics concern-
ing the presentation of the optimal formulation. To the 

best of our knowledge, this is the first instance of such an 
endeavour.

The dataset contains valuable information regarding 
various formulations of fast-disintegrating tablets, which 
can be utilized in other studies. Furthermore, the data-
set can be used to conduct an optimal analysis of formu-
lation steps. The methodology employed in this study 
can also be applied to develop datasets for other dosage 

Table 1 Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession number)

Data file 1 final Data All Exipients.tab MS Excel file (.xlsx) Harvard Dataverse (https://doi.org/10.7910/DVN/TUSJYB) (12)

Data file 2 Method.docx MS word file (.docx) Harvard Dataverse (https://doi.org/10.7910/DVN/TUSJYB)(12)

Data file 3 Figure 1 steps of study implementation Picture files (.png) Harvard Dataverse (https://doi.org/10.7910/DVN/TUSJYB)(12)

Data file 4 DataArticlmanuscriptRef.enl Endnote Ref file (.enl) Harvard Dataverse (https://doi.org/10.7910/DVN/TUSJYB)(12)

Fig. 1 Steps of study implementation
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forms, serving as a prerequisite and introduction to fur-
ther research in the field of modelling drug formulations.

In future work, this dataset will be employed to con-
struct a prediction model using machine learning and 
deep learning techniques to forecast the disintegration 
time of fast-disintegrating tablets.

Another notable finding from our study, as depicted 
in Fig. 2, is that a significant proportion of articles were 
found in the Scopus and Google Scholar databases. By 
conducting searches specifically in these databases, we 
were able to access the majority of the articles included 
in our study. This highlights the importance of utilizing 
these databases as valuable sources of research literature.

Limitations In selecting the formulations of the arti-
cles, there were limitations that led to the exclusion 
of some formulations or even the entire article in data 
extraction. • Some articles did not report the 
main features of interest that were mentioned as inclu-
sion criteria for this article. • A large number of 
articles did not use direct compression as the method for 
material blending. • Some articles reported the 
response variables as dispersion time instead of disin-
tegration time, and as a result, these formulations were 
also excluded due to the different nature of these two 
response variables. 
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