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Introduction
Mendelian randomisation (MR) is an increasingly popu-
lar method for inferring the causal effect of modifiable 
exposures on epidemiological outcomes [1]. In an MR 
study, genetic variants which are robustly associated with 
the exposure of interest are used as instruments in an 
instrumental variables analysis.

One of the most popular resources for conducting MR 
analyses is the UK Biobank (UKB) [2]. The UKB is a large 
(approximately half a million participants) population 
cohort study of Britons. The UKB has been used in the 
MR literature to explore the causal effects of smoking-
related phenotypes [3]. However, the UKB genotyping 
was rolled out over several steps.
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Abstract
Objective  To explore the use of multivariable instrumental variables to resolve the “damned if you do, damned if you 
don’t” adjustment problem created for Mendelian randomisation (MR) analysis using the smoking or lung function 
related phenotypes in the UK Biobank (UKB).

Result  “damned if you do, damned if you don’t” adjustment problems occur when both adjusting and not-adjusting 
for a variable will induce bias in an analysis. One instance of this occurs because the genotyping chip of UKB 
participants differed based on lung function/smoking status. In simulations, we show that multivariable instrumental 
variables analyses can attenuate potential collider bias introduced by adjusting for a proposed covariate, such as 
the UKB genotyping chip. We then explore the effect of adjusting for genotyping chip in a multivariable MR model 
exploring the effect of smoking on seven medical outcomes (lung cancer, emphysema, hypertension, stroke, heart 
diseases, depression, and disabilities). We additionally compare our results to a traditional univariate MR analysis using 
genome-wide analyses summary statistics which had and had not adjusted for genotyping chip. This analysis implies 
that the difference in genotyping chip has introduced only a small amount of bias.
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Participants enrolled in the UK BiLEVE study were 
genotyped using different instruments (‘genotyping 
chip’) than other participants [4]. Because UK BiLEVE 
was not randomly sampled, there is a worry that differ-
ences in genotyping between participants could cause 
(confounding) bias if the sampling probability is asso-
ciated with risk factors for the outcome phenotype of 
interest. Because of this, there is general advice to adjust 
UKB GWASs by genotyping chip [5]. However, the UK 
BiLEVE study selected participants who were in a tail or 
centre of the distribution for lung function and smoking. 
This poses a problem for genetic designs, like MR, in the 
UKB exploring smoking and lung function-related phe-
notypes. If genotyping chip is determined by UK BiLEVE 
enrolment, which is in turn determined by lung function 
and smoking status, then adjusting for genotyping chip 
could introduce collider bias.

Situations where no adjustment will result in bias, but 
where the required covariate is a collider (see Fig. 1) have 
been described as “damned if you do, damned if you 
don’t” adjustment problems in a recent review of types of 
covariate controls [6]. This review concluded that there 
were no satisfactory methods for addressing this bias, 
and they suggested authors should implement sensitivity 
analyses when encountering this type of problem. Exist-
ing guidelines for conducting genetic analysis in the UKB 
had made similar suggestions of running analyses with 
and without adjustment for genotyping chip when a phe-
notype might relate to lung function or smoking [5].

In this article, we propose a complementary sensitivity 
analysis to address this type of adjustment paradox, with 
specific emphasis on addressing bias due to UK BiLEVE 
in MR studies. Multivariable IV (MVIV) is an extension 
of traditional IV analysis to include more than one expo-
sure [7]. A traditional IV analysis, like MR, assumes that 

the instrument is robustly associated with the exposure, 
can affect the outcome only via the exposure, and that 
there is no ‘back door’ path from the instrument to the 
outcome. MVIV modifies these assumptions so that: 1) 
the instrument is robustly associated with the exposure(s) 
conditional on the other covariate(s), can affect the out-
come only via one of the exposures, and that, conditional 
on all covariates, there is no ‘back door’ path from the 
instrument to the outcome. While the effect estimates of 
a standard IV analysis are the total effect of the exposure 
on the outcome, MVIV effect estimates should be inter-
preted as the direct effect of the exposure conditional on 
the covariates. Because of this, MR applications of MVIV 
have shown that it can be used to address bias, like col-
lider bias [8, 9], by ensuring that the effect estimate of 
interest is conditionally independent of a known biasing 
phenotype. Intuitively then, adding the genotyping chip 
as a second exposure to an MR model using chip adjusted 
genome-wide summary statistics should remove any col-
lider bias introduced by adjusting for genotyping chip. 
The “damned if you do, damned if you don’t” paradoxes 
explored here differs from existing applications of MVIV 
which have focused on settings where the variable being 
adjusted for is only one of a confounder [10], pleiotropic 
[7], or a collider [8, 9], whereas here we consider a set-
ting where it is both a collider and either pleiotropic or a 
confounder.

Main text
Simulation
Aims  We ran a simple simulation to provide a proof of 
concept that MVIV can be used to address “damned if you 
do, damned if you don’t” adjustment problems. We report 
our simulations using the ADEMP (aims, data-generating 

Fig. 1  An example “damned if you do, damned if you don’t” adjustment problem. Adjusting for M will result in collider bias, but not adjusting for M will 
introduce confounding
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mechanisms, estimands, methods, and performance mea-
sures) approach [11].

Data-generating mechanisms  We simulated a setting in 
which there is an exclusion restriction violation (i.e. where 
the instrument causes the outcome via a path not medi-
ated by the exposure), but where adjusting for this viola-
tion would introduce M bias (Fig. 2). More formally, we 
simulated 100 single nucleotide polymorphisms (SNPs, 
which are common genetic variants) as independent and 
identically distributed binomial variables with the follow-
ing parameters.

	 SNP ∼ B
(
2, N

(
0.5, 0.12))

The distribution of allele frequencies was chosen to be 
loosely based on the one observed for the genome wide 
significant SNPs in the UKB GWAS of lifetime smoking 
by Wooton and colleagues [3].

We then simulated two confounders as independent 
and identically distributed normal variables with the fol-
lowing parameters:

	 C ∼ N
(
0, 12)

We then defined the exposure as.

	 E = C1 +
∑50

1

[
N

(
0.1, 0.052) ∗ SNP

]
+ ε1

where ε is an error term such that ε1 ~ N(0, 12).
We defined the potential covariate for blocking the 

exclusion restriction violation as.

	 P = C2 +
∑100

51

[
N

(
0.1, 0.052) ∗ SNP

]
+ ε2

where ε2 ~ N(0, 12).
Finally we defined the outcome as.

	 Y = E + C1 + C2 + P + ε3

where ε3 ~ N(0, 12).
The phenotypic beta values chosen in this simulation 

were chosen purely arbitrarily. However, biases are gener-
ally more visible with larger effect estimates. By choosing 
betas values of 1 we therefore hoped to clearly illustrate 
any possible effect of using MVIV. The exact conclusions 
of our simulation are therefore not expected to generalise 
to any specific applied setting.

Estimands  The causal effect of the exposure on the 
outcome.

Methods: We compare three methods for estimating 
the causal effect of the exposure on the outcome:

1)	 We ran an inverse variance weighted (intercept 
free) regression of By ~ Bx + 0, where By is the SNP-
outcome association and Bx is the SNP-exposure 
association, and where the Bx and By were estimated 
in linear models which additionally adjusted for P.

2)	 An inverse-variance weighted (intercept free) 
regression of By ~ Bx + 0, where the Bx and By 
were not estimated in linear models which did not 
additionally adjust for P.

3)	 An inverse-variance weighted (intercept free) 
regression of By ~ Bx + Bp + 0, where Bp is the 
SNP-covariate association, and where the Bx and By 
were estimated in linear models which additionally 
adjusted for P.

For readers less familiar with the MR literature, it is 
worth noting that the intercept-free weighted regression 
is equivalent to an inverse variance weighted meta-anal-
ysis of the IV Wald ratios for each SNP. In addition, [1] 

Fig. 2  Directed Acyclic Graph of data generative model used in simulation. Here, G1 is the genetic liability to the exposure, and G2 the genetic liability to 
the potential covariate. C is the potential covariate, and U1 and U2 are confounders. X and Y are the exposure and outcome respectively. M is additionally 
pleotropic and a collider
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and [2] only used the first 50 simulated SNPs (i.e. those 
which associated with the exposure), while [3] used all 
100 simulated SNPs (i.e. SNPs which associated with 
either exposure). By, Bx, and Bp were all estimated in non-
overlapping samples of 250,000 participants.

Performance measure  The mean bias in the causal effect 
of the exposure on the outcome over 1000 iterations.

Results of the simulation  The simulation found that 
both adjusting and not adjusting the linear model for 
the covariate resulted in bias (mean bias = -0.445 [MC 
SE = 0.002] and 0.972 [MC SE = 0.001] for the adjusted and 
not adjusted analysis respectively). On the other hand, the 
MVIV model attenuated most of the bias (mean bias = 
-0.064 [MC SE = 0.002]).

Applied example with the UKB genotyping chip
We used a two-sample MR analysis of the effect of smok-
ing on seven outcomes (lung cancer, emphysema, depres-
sion, hypertension, stroke, heart diseases, and diabetes) 
in the UKB as an applied example. The outcomes were 
chosen because there is existing literature implying a 
causal association between smoking and these outcomes 
[12–17]. We ran three versions of this analysis: (1) using 
univariable MR to estimate the effect of smoking on the 
outcomes where the UKB smoking, lung cancer and 
emphysema GWASs had adjusted for genotyping chip, 
(2) using univariable MR to estimate the effect of smok-
ing on the outcomes where the UKB smoking, lung 
cancer and emphysema GWASs had not adjusted for 
genotyping chip, and (3) using multivariable MR estimate 
the effect smoking on the outcomes adjusted for geno-
typing chip where the UKB smoking, lung cancer and 
emphysema GWASs had adjusted for genotyping chip.

We used the Wootton et al. UKB lifetime smoking 
GWAS as a source of SNP-exposure associations [3], 
which we standardised by dividing the effect estimate 
and standard error by 0.6940093. To estimate genotype-
chip association we ran a GWAS (adjusted for age, sex, 
and the first 10 principal components of ancestry) using 
BOLT-LMM in the MRC-IEU UKB GWAS pipeline. Full 
methods for both GWASs described elsewhere [3, 18]. In 
both the univariate and multivariate setting, we selected 
genome-wide significant SNPs associated with the 
exposure(s) of interest as genetic instruments, and then 
clumped this list using an r2 of 0.001 and kb of 10,000. 
We additionally implemented the FIQT WCC on the 
exposure GWASs to correct for any effect of Winner’s 
curse [19].

We used the Elsworth’s UKB GWASs in the MRC-IEU 
OpenGWAS platform as a source of SNP-emphysema 
and -hypertension associations [20]; as well as Nikpay et 
al’s GWAS of CAD, Malik et al’s GWAS of stroke, Wang 

et al’s GWAS of lung cancer, Howard et al’s GWAS of 
depression and the FinnGen round 5 GWAS of disabili-
ties [21–25]. Details on genotyping, quality control, and 
phenotyping can be found in the original publications 
and on the UKB website (https://biobank.ndph.ox.ac.uk/
ukb/search.cgi). All outcome GWASs were on the odds 
ratio scale. We harmonised the exposure and outcome 
samples, and removed palindromic SNPs whose effect 
allele could not be inferred using based on minor allele 
frequency. We used four MR estimators: IVW, weighted 
mode, weighted median, and MR Egger. We addition-
ally estimated the heterogeneity in the MR Wald ratios 
using the Cochrane Q statistic as a control for exclu-
sion restriction violations. The univariate MR analysis 
was implemented using the TwoSampleMR R package 
[26, 27]. Multivariable MR analyse additionally used the 
MVMR, MendelianRandomization, and MVMRMode R 
packages [28–30].

Table  1 presents the results of this analysis. These 
broadly show highly consistent findings across the three 
methods, with most of the changes in estimates smaller 
than the standard error of each point estimate. Overall, 
this would therefore broadly imply that there is minimal 
collider or confounding bias introduced by adjusting or 
not adjusting for genotyping chip.

Limitations
Here we have shown that MVIV can, in theory, be used 
to attenuate bias when “damned if you do, damned if you 
don’t” adjustment problems occur in an IV analysis. We 
then apply this to the UKB and show that, despite dif-
ferences in genotyping depending on lung function and 
smoking status of participants, the UK BiLEVE study 
appears to have introduced only a small amount of bias 
into our estimates of the causal effect of smoking on lung 
cancer.

There are three complications to the application of 
our findings to address differences in genotyping chip 
in the UKB, which we believe mean that our proposal 
should be used to supplement, rather than replace the 
existing guidance of performing both a chip-adjusted, 
and no-chip-adjusted, analysis as a sensitivity analysis. 
Firstly, MVIV has additional parameters than univari-
able IV analyses, and will therefore be even less precise. 
Secondly, the collinearity of exposures (such as smok-
ing and genotype chip) can also introduce condition-
ally weak instruments into analyses which would have 
strong instruments in a university setting. Although not 
an issue in our applied analysis, this could become a 
major issue in analysis using weaker instruments, such as 
parental smoking status. Hence, authors should come to 
a judgment about which method will have a lower mean 
squared error and then use the alternatives as sensitivity 
analyses. Thirdly, because enrolment into the UK BiLEVE 

https://biobank.ndph.ox.ac.uk/ukb/search.cgi
https://biobank.ndph.ox.ac.uk/ukb/search.cgi
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study was determined by smoking and lung function, it 
could be argued that it is, in effect, a proxy of these vari-
ables. If this is the case, then adjusting for genotyping 
chip in a model would potentially do something equiva-
lent to adjusting for a mediator in a traditional regression 
analysis, and therefore introduce bias. This underpins the 
importance of not using the MVIV analysis to replace the 
existing guidelines.

A final, but related, limitation when applying our pro-
posal to other settings is that there has to be a way to 

validly instrument the proposed covariate. Since there 
are many settings, especially when using summary data 
IV analysis like two-sample MR, when study-specific 
variables, such as UKB genotyping chip, this may be 
more common than the authors would hope.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13104-023-06434-8.

Table 1  Results of applied example. UVMR = univariable Mendelian randomisation, MVMR = multivariable Mendelian randomisation
Phenotype Analysis IVW MR Egger Weighted Median Weighted Mode Num-

ber of 
SNPs

F statistic: 
phe-
notype 
(chip)

Co-
chrane 
Q

Diabetes UVMR, no chip 
adjustment

0.314 (0.150 to 
0.477)

-0.086 (-0.761 
to 0.590)

0.258 (0.041 to 
0.474)

0.231 (-0.217 to 
0.680)

124 41.917 0.000

UVMR, chip adjustment 0.240 (0.061 to 
0.418)

-0.018 (-0.784 
to 0.748)

0.242 (0.019 to 
0.465)

0.203 (-0.232 to 
0.638)

118 42.139 0.000

MVMR, chip adjustment 0.302 (0.121 to 
0.483)

-0.076 (-0.596 
to 0.443)

0.259 (0.026 to 
0.493)

0.311 (0.135 to 
0.471)

215 351.575 
(193.090)

0.000

Lung cancer UVMR, no chip 
adjustment

1.454 (1.121 to 
1.788)

3.336 (1.997 
to 4.675)

1.084 (0.703 to 
1.466)

0.968 (-0.011 to 
1.948)

122 42.166 0.000

UVMR, chip adjustment 1.463 (1.098 to 
1.827)

3.041 (1.483 
to 4.600)

1.016 (0.619 to 
1.413)

0.767 (-0.359 to 
1.892)

116 42.431 0.000

MVMR, chip adjustment 1.352 (1.006 to 
1.699)

1.930 (0.868 
to 2.993)

0.994 (0.557 to 
1.431)

1.236 (0.808 to 
1.571)

178 413.201 
(163.361)

0.000

Chronic 
bronchitis/ 
emphysema

Univariable, no chip 
adjustment

0.229 (0.194 to 
0.264)

0.339 (0.212 
to 0.466)

0.210 (0.161 to 
0.258)

0.189 (0.055 to 
0.322)

132 42.370 0.003

Univariable, chip 
adjustment

0.247 (0.206 to 
0.288)

0.426 (0.256 
to 0.597)

0.242 (0.190 to 
0.294)

0.262 (0.109 to 
0.415)

117 42.280 0.001

MVMR, chip adjustment 0.237 (0.190 to 
0.285)

0.346 (0.204 
to 0.488)

0.220 (0.157 to 
0.284)

0.299 (0.230 to 
0.369)

120 377.066 
(54.873)

0.004

Depression UVMR, no chip 
adjustment

0.485 (0.379 to 
0.5910

-0.009 (-0.404 
to 0.385)

0.394 (0.289 to 
0.500)

0.282 (-0.001 to 
0.565)

121 42.196 0.000

UVMR, chip adjustment 0.473 (0.353 to 
0.594)

0.159 (-0.338 
to 0.656)

0.469 (0.358 to 
0.581)

0.459 (0.163 to 
0.755)

116 41.872 0.000

MVMR, chip adjustment 0.558 (0.454 to 
0.662)

0.293 (0.012 
to 0.575)

0.534 (0.411 to 
0.658)

0.389 (0.282 to 
0.563)

201 367.184 
(177.232)

0.000

Heart disease UVMR, no chip 
adjustment

0.449 (0.295 to 
0.603)

-0.088 (-0.717 
to 0.541)

0.423 (0.219 to 
0.627)

0.155 (-0.426 to 
0.735)

125 41.890 0.000

UVMR, chip adjustment 0.453 (0.288 to 
0.617)

-0.371 (-1.061 
to 0.320)

0.522 (0.313 to 
0.731)

0.617 (-0.021 to 
1.254)

119 42.191 0.000

MVMR, chip adjustment 0.423 (0.248 to 
0.598)

-0.295 (-0.820 
to 0.229)

0.445 (0.209 to 
0.682)

0.490 (0.332 to 
0.652)

201 373.412 
(183.898)

0.000

High blood 
pressure

UVMR, no chip 
adjustment

0.319 (0.187 to 
0.451)

-0.050 (-0.552 
to 0.453)

0.202 (0.078 to 
0.325)

0.214 (-0.011 to 
0.439)

124 41.997 0.000

UVMR, chip adjustment 0.264 (0.132 to 
0.396)

-0.056 (-0.587 
to 0.474)

0.234 (0.121 to 
0.347)

0.274 (0.044 to 
0.505)

120 42.139 0.000

MVMR, chip adjustment 0.309 (0.195 to 
0.423)

0.001 (-0.304 
to 0.305)

0.291 (0.170 to 
0.412)

0.347 (0.244 to 
0.450)

216 349.781 
(192.446)

0.000

Stroke UVMR, no chip 
adjustment

0.307 (0.193 to 
0.421)

-0.053 (-0.515 
to 0.408)

0.270 (0.106 to 
0.434)

0.233 (-0.096 to 
0.561)

123 41.956 0.230

UVMR, chip adjustment 0.243 (0.127 to 
0.360)

-0.119 (-0.623 
to 0.385)

0.207 (0.032 to 
0.381)

0.153 (-0.261 to 
0.568)

118 42.227 0.347

MVMR, chip adjustment 0.265 (0.128 to 
0.402)

-0.035 (-0.462 
to 0.393)

0.276 (0.071 to 
0.480)

0.244 (0.096 to 
0.393)

180 416.145 
(169.530)

0.061
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