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Abstract 

Objective To use genome-wide association study (GWAS) by subtraction, a method for deriving novel GWASs 
from existing summary statistics, to derive genome-wide summary statistics for paternal smoking.

Result A GWAS by subtraction was implemented using a weighted linear model that defined the child-genotype 
paternal-phenotype association as the child-genotype child-phenotype association minus the child-genotype mater-
nal-phenotype association. We first use the laws of inherence to derive the weighted linear model. We then imple-
mented the linear model to create a GWAS of paternal smoking by subtracting the summary statistics from a GWAS 
of maternal smoking from the summary statistics of a GWAS of the index individual’s smoking. We used a Monte-Carlo 
simulation to validate the model and showed that this approach performed similarly in terms of bias to perform-
ing a traditional GWAS of paternal smoking. Finally, we validated the summary statistics in a Mendelian randomisa-
tion analysis by demonstrating an association of genetically predicted paternal smoking with paternal lung cancer 
and emphysema.

Keywords GWAS-by-subtraction, Intergenerational Mendelian randomisation, Family GWAS, Genome Wide 
association studies

Introduction
Genome-wide association studies (GWAS) are a com-
mon way of estimating genotype–phenotype associations 
[1]. In a GWAS, the association of each variant with the 
phenotype is estimated in a hypothesis-free manner [2]. 
GWASs typically only include ‘common’ genetic variants 
which occur in at least 1% of the study population. One 
application of GWAS summary statistics is as a source 
of genotype–phenotype associations for two-sample 
Mendelian randomisation (MR) analyses [3–5]. MR is 
an epidemiological design which leverages the random 
inheritance of genetic variants to justify the assumptions 
of the instrumental variable framework.

The implications of parental smoking on child out-
comes are of public health importance. Because half 
of an individual’s genotype is a random sample of half 
of their mother’s genotype, one should be able to find 
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robust associations between the child’s genotype and 
the maternal phenotype due to the associations between 
the maternal genotype and maternal phenotype and the 
maternal genotype and offspring’s genotype. Published 
GWASs summary statistics of maternal smoking allow 
for the investigation of the effect of an individual’s paren-
tal smoking on their (the child’s) outcomes in what has 
been dubbed ‘proxy gene-environment MR’ [6].

Paternal smoking is also an exposure of interest. For 
example, studies looking at the effect of maternal smok-
ing on offspring birth outcomes have used paternal 
smoking as a negative control [7]. However, there are 
no published GWASs of paternal smoking. GWAS by 
subtraction (GWAS-BS) is a recent method for deriving 
novel GWASs from existing summary statistics [8]. In 
a traditional GWAS-BS, two or more GWASs are com-
bined using structural equation modelling. An alternative 
is to use a weighted linear model (WLM) [9]. A WLM 
is created by combining the GWAS summary statistics 
using an a priori linear model (e.g., y =  x1 + 2*x2—3 where 
 x1 and  x2 are the single-nucleotide polymorphism (SNP) 
effects being combined). Because the amount of genetic 
overlap between parents and children is known a pri-
ori, WLM has already been used to adjust GWAS sum-
mary statistics for dynastic effects (e.g., the association 
between the maternal genotype and child phenotype due 

to the direct inherence of the genetic variants by the child 
rather than in utero effects) [8].

Here we used a WLM and GWASs of lifetime smok-
ing and maternal smoking to derive a GWAS of paternal 
smoking (Fig. 1). In brief, because the offspring’s genetic 
liability to smoke is half due to the inertance of the 
maternal genetic liability, and half due to the inherence 
of the paternal genetic liability, by subtracting the mater-
nal genetic liability estimated in a GWAS from the child’s 
genetic liability estimated in a GWAS using a WLM we 
created GWAS summary statistics for paternal smoking.

Main text
Derivation of the linear model used in the GWAS 
by subtraction
An individual’s genetic risk is the average of their parent’s 
genetic risk. Hence:

where  Bcg-cp is the association between the child’s geno-
type and child’s phenotype (i.e. his/her genetic liability 
towards the phenotype),  Bfg-fp is the association between 
the father’s genotype and father’s phenotype, and  Bmg-mp 
is the association between the maternal genotype and 
maternal phenotype.

(1)Bcg−cp =
(

Bfg−fp + Bmg−mp

)

/2

Fig. 1 Study overview figure
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The association between the child’s genotype and the 
parental phenotype is the product of the association 
between the child’s genotype and the parental geno-
type, and the parental genotype and the parental phe-
notype. Therefore:

where  Bcg-fp is the association between the child’s geno-
type and the father’s phenotype, and  Bcg-fg is the asso-
ciation between the child’s genotype and the father’s 
phototype.

Because the child inherits half of each parent’s genetic 
liability,  Bcg-fg will be equal to 0.5. Therefore:

(2)Bcg−fp = Bcg−fg ∗ Bfg−fp

(3)Bcg−mp = Bcg−mg ∗ Bmg−mp

Therefore, by combining [1, 4, 5] we get:

Using the rules of propagation of error, the standard 
error of this effect would therefore be

where  SEcg-cp is the standard error in the association 
between the child’s genotype and child’s phenotype, and 
 SEcg-mp is the standard error in the association between 
the child’s genotype and maternal phenotype. A key of 
variable names in the equations can be found in Table 1.

(4)Bcg−fp = 0.5 ∗ Bfg−fp

(5)Bcg−mp = 0.5 ∗ Bmg−mp

(6)Bcg−fp = Bcg−cp − Bcg−mp

SEcg−fp =

√

SE
2
cg−cp + SE

2
cg−mp

Table 1 Key providing the full forms of variables used in equations

WLM weighted linear model, GWAS Genome-Wide Association Study

Variable initial Manuscript section Full form Contribution to analyses

Bcg-cp Derivation of the linear model The association between the child’s genotype 
and child’s phenotype (i.e. his/her genetic liability 
towards the phenotype)

This is estimated from a GWAS of smoking. 
Paternal smoking summary statistics are derived 
by subtracting  Bcg-mg from this variable

Bfg-fp The association between the father’s genotype 
and father’s phenotype

NA

Bmg-mp The association between the mother’s genotype 
and the mother’s phenotype

NA

Bcg-fp The association between the child’s genotype 
and the father’s phenotype

This is the target estimand of the WLM

Bcg-fg The association between the child’s genotype 
and the father’s genotype

NA

Bcg-mp The association between the child’s genotype 
and the mother’s phenotype

This is estimated from a GWAS of maternal 
smoking. Paternal smoking summary statis-
tics are derived by subtracting this variable 
from  Bcg-cp

Bcg-mg The association between the child’s genotype 
and the mouther’s genotype

NA

SEcg−fp Standard error in the estimate of  Bcg-fg Uncertainty in WLM estimates

SE
2
cg−cp

Standard error in the estimate of  Bcg-cp Uncertainty in the estimates from the smoking 
GWAS

SE
2
cg−mp

Standard error in the estimate of  Bcg-mp Uncertainty in the estimates from the maternal 
smoking GWAS

Fi Validation situation Allele inherited from the father NA

Mi Allele inherited from the mother NA

Cg Child’s unweighted allele score Exposure in all GWASs

B Variant-phenotype association (i.e. allele score 
weights)

NA

Cp Child’s phenotype Outcome in GWAS of smoking

Mg Maternal allele score (i.e. with both inherited 
and non-inherited allele)

NA

Mp Mather’s phenotype Outcome in GWAS of maternal smoking

Fp Father’s phenotype Outcome in the traditional GWAS of paternal 
smoking



Page 4 of 7Woolf et al. BMC Research Notes          (2023) 16:159 

Validation of the linear model
To validate this linear model, we ran a simulation. We 
report our simulations using the ADEMP (aims, data-
generating mechanisms, estimands, methods, and per-
formance measures) approach [10]:

Aims
To validate the proposed WLM as a method for produc-
ing unbiased estimates of the association between the 
child’s genotype and the father’s phenotype.

Data‑generating mechanisms
We simulated both the inherited maternal and paternal 
genotypes as two independent but identically distributed 
one-level binomial distributions

For the paternal and maternal inherited genetic vari-
ants respectively.

The child’s genotype was then defined as

The genotype–phenotype association was defined as

The child’s phenotype was then the product of both the 
parental variants and a random normal error:

The maternal genotype was defined as

The maternal and paternal phenotypes were then 
respectively defined as:

Estimand
The association between the child’s genotype and the 
paternal phenotype.

Methods
We compare two methods for estimating the associa-
tion between the child’s genotype with the child’s phe-
notype and the maternal phenotype by (1) regressing the 
paternal phenotype on the child’s genotype. This method 
would produce results analogous to those of a traditional 

Fi ∼ B(0.5, 1)

Mi ∼ B(0.5, 1)

Cg = Fi + Mi

B ∼ N(1, 0.006)

Cp = Cg ∗ B + N(0, 1)

Mg = B(0.5, 1) + Mi

Mp = Mg ∗ B + N(0, 1)

Fp = (Fi + B(0.5, 1)) ∗ B + N(0, 1)

GWAS of paternal smoking. (2) Regressing the maternal 
phenotype on the child’s genotype and the child’s pheno-
type on the child’s genotype and combining these using 
the proposed WLM.

Performance measure
We then calculated the mean bias and Monte-Carlo 
standard error in the two estimates.

Additional simulations
To further validate the model for a wider range of settings 
we additionally ran the simulation using the beta and 
minor allele frequency values for the 126 genome wide 
significant SNPs from the Wootton et al. GWAS of smok-
ing as the beta (i.e. B above) minor allele frequency val-
ues (i.e. probabilities for  Fi,  Mi,  Fp, and  Mg above) for the 
simulation. We additionally ran the simulation using the 
minimum, 1st quartile, mean, median, 3rd quartile, and 
maximum values of the above two parameters from the 
GWAS (Additional file 1: Table S1).

Results of the simulation
The mean bias by directly regressing the paternal phe-
notype on the child’s genotype was 0.001 (95% CI 0.003 
to − 0.001), while the mean bias in the WLM was 0.000 
(95% CI 0.002 to −  0.002). This implies that our WLM 
should perform similarly, in terms of bias, to a GWAS of 
paternal smoking.This conclusion was reinforced by the 
additional simulations (Additional file 1: Table S1).

Creation and validation of GWAS summary statistics
We implemented the above WLM using the GWAS of 
lifetime smoking by Wootton and colleagues and the 
GWAS of maternal smoking during pregnancy by Els-
worth and colleagues [11, 12]. Both GWAS were cre-
ated using the Medical Research Council Integrated 
Epidemiology Unit (MRC IEU) GWAS pipeline, which 
is described in detail elsewhere [13]. To have compara-
ble units in both GWASs we converted both GWAS to 
have units on the standardised mean difference scale. We 
standardised the lifetime smoking summary statistics 
by dividing the beta and standard error of the summary 
statistics by the standard deviation of lifetime smok-
ing (0.6940093). We standardised the maternal smoking 
GWAS summary statistics by first converting them into 
log odds ratios by the effect estimate and standard error 
by (121634/397732)*(1-(121634/397732)) (i.e., p[1-p], 
where p is the prevalence of maternal smoking during 
pregnancy), and then convert the log odds into a stand-
ardised mean difference by dividing them by 

(

π ∗ 3−0.5
)

 
[13, 14] (Additional file 2: Fig S1).

The resulting GWAS had a genomic control inflation 
factor (λGC) of 1.091 (SE = 0.027). Figure  2 presents the 
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Manhattan and QQ plot for the GWAS. The λGC and 
QQ plot imply that the test statistics are larger than what 
would be expected by chance, and therefore the poten-
tial presence of residual bias in our summary statistics. 
The reduction in the number of hits in the Manhattan 
plot when compared to the maternal smoking and life-
time smoking GWAS implies that the WLM has reduced 
power compared to these GWASs. Both the GWASs used 
the UK Biobank (UKB), and had adjusted for the UKB 
genotyping chip. Following general advice, we addition-
ally created a secondary GWAS of paternal smoking from 
the same GWASs, but without adjusting for genotyping 
chip. However, not adjusting for genotyping chip appears 
to result in more biased estimates (see the Additional file 
for more details).

Validation of the GWAS summary statistics
We validated the GWAS summary data by testing using 
MR that variants predicting paternal smoking associ-
ated with paternal lung cancer and emphysema/bronchi-
tis. In brief, we selected SNPs with a 5 ×  10–6 association 
in our paternal smoking GWAS. The p-value threshold 
was chosen to boost the number of SNPs included in 
the analysis, and therefore power while ensuring reason-
ably strong instrument strength. As a sensitivity analysis, 
we also selected SNPs at 5 ×  10–7 and 5 ×  10–8 p-value 
thresholds. We clumped with an  r2 of 0.001 and kb of 
10,000. We additionally implemented the False Discov-
ery Rate Inverse Quantile Transformation Winner’s curse 

correction on the exposure GWASs to correct for the 
effect of Winner’s curse [15]. We then used the Elsworth 
and colleagues UKB GWAS in the MRC IEU OpenG-
WAS platform as a source of paternal outcome data [11]. 
Details on genotyping, quality control, and phenotyping 
can be found in the original publications and on the UKB 
website (https:// bioba nk. ndph. ox. ac. uk/ ukb/ search. cgi).

We implemented the MR analysis using the TwoSam-
pleMR R package [16, 17]. We harmonised the data, and 
allowed TwoSampleMR to removed palindromic SNPs 
whose effect allele could not be inferred using based on 
minor allele frequency. SNP effects were combined using 
the inverse-variance weighted (IVW) meta-analysis with 
multiplicative random effects.

Our paternal GWAS had relatively strong instruments 
(mean F = 24 from 26 SNPs). As expected, in our pri-
mary analysis we found positive associations between 
each standard deviation of genetically proxied pater-
nal smoking and the log odds of paternal lung cancer 
(risk difference per standard deviation (SD) increase in 
smoking = 0.754 (se = 0.362, p = 0.034) and emphysema/
bronchitis (risk difference per SD increase in smok-
ing = 1.014 (se = 0.285, p = 0.0004). Our secondary anal-
yses using more stringent p-value thresholds to select 
SNPs found results in the same direction, but larger beta 
values. Using a 5 ×  10–7 p-value threshold (N SNPs = 12, 
F = 27) the log odds of paternal lung cancer (risk differ-
ence per SD increase in smoking = 1.050 (se = 0.726, 
p = 0.148) and emphysema/bronchitis (risk difference per 

Fig. 2 Manhattan and QQ plots for the GWAS of paternal smoking

https://biobank.ndph.ox.ac.uk/ukb/search.cgi
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SD increase in smoking = 1.411 (se = 0.510, p = 0.006). 
Using a 5 ×  10–7 p-value threshold (N SNPs = 3, F = 35) 
the log odds of paternal lung cancer (risk difference per 
SD increase in smoking = 1.452 (se = 2.774, p = 0.601) and 
emphysema/bronchitis (risk difference per SD increase 
in smoking = 3.132 (se = 0.943, p = 0.0009). The lack of a 
significant effect for lung cancer with the more stringent 
p-values probably reflects the reduction of power from 
using fewer SNPs, and that there are around 20% fewer 
lung cancer cases than emphysema/bronchitis cases 
(37,443 vs 46,263).

Limitations
To the best of our knowledge, this is the first application 
of WLMs to derive GWAS summary statistics for one 
parent when observations have only been made on the 
offspring and another parent.

Both our WLM and a direct GWAS of paternal smok-
ing could be affected by assortative mating. Specifically, 
we would expect a direct GWAS of parental smoking to 
be inflated by assortative mating because the other par-
ent’s genotype would confound the association with the 
offspring’s genotype. The WLM will then also be biased 
to the extent that the inflation of the SNP effects in the 
GWAS of parental smoking is not proportional to the 
inflation of the GWAS of lifetime smoking. In addi-
tion, our WLM may also be biased by residual popula-
tion structure in either the lifetime smoking or maternal 
smoking GWASs, or indirect genetic effects in the life-
time smoking GWAS [18].

We created this GWAS primarily for use within a Men-
delian randomisation design. Multivariable MR (MVMR) 
is an extension of MR to include multiple exposures. 
Estimation of the (conditional) instrument strength for 
an MVMR analysis requires knowing the correlation 
between the exposures, or assuming that the correlation 
is zero. The latter is less conservative, however, because 
we lack the phenotype exposure data the prior cannot be 
estimated. An alternative may be to use the correlations 
of maternal smoking with the relevant phenotypes as a 
proxy. Doing so should produce more conservative esti-
mates of the instruments than assuming no correlation. 
The correlation between maternal and paternal smoking 
can, however, be estimated from the existing literature on 
assortative mating [19].

Finally, a limitation of linear models is that they can 
result in under-fitting of data, e.g. due to non-differential 
measurement error. We are, however, not aware of other 
external GWAS or biobank data form which we could 
further validate our GWAS by comparing our results too.

In this research note we have described and vali-
dated the creation of a GWAS of paternal smoking via 

a GWAS-by-subtraction. We hope that they will further 
facilitate the study of intergenerational effects.
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