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Objective
The glucocorticoid receptor (GR) is a ubiquitous tran-
scription factor regulating many genes associated with 
stress response, inflammation, and apoptosis [1–5]. In 
medicine, its anti-inflammatory properties are com-
monly induced using the synthetic glucocorticoid 
dexamethasone [6]. Because of its important role in 
controlling inflammation, the regulation of GR has been 
studied in great detail. In the absence of glucocorti-
coids, GR is mostly found in the cytoplasm in its inactive 
form. Once glucocorticoids diffuse into the cell, they can 
bind to GR and initiate rapid nuclear translocation and 
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Abstract
Objectives  The glucocorticoid receptor (GR) is a well-studied, ligand-activated transcription factor and a common 
target of anti-inflammatory treatments. Recently, several studies have drawn attention the effects of binding of GR 
to RNA rather than DNA and the potential implications of this activity for GR function. The objective of our study 
was to further characterize the relationship between GR function and RNA binding by measuring changes in the 
glucocorticoid-driven transcriptome in the presence of a GR mutant that exhibited reduced RNA affinity.

Data description  GR was activated in three cell lines containing GR constructs (GR-HaloTag). One of the cell lines 
contained a wild-type GR-HaloTag. Another contained GR-HaloTag with a mutation that reduced RNA affinity and 
slightly reduced DNA affinity. The third cell line contained GR-HaloTag with a mutation that only slightly reduced DNA 
affinity. All three cell lines were treated with dexamethasone, a GR agonist. RNA-seq samples were collected every 
hour for 3 h. Moreover, transcriptome quantification was accomplished via labeling of RNAs transcribed in the final 
hour of dexamethasone treatment using 4-thiouridine. These labeled RNAs were then purified and sequenced. This 
data set is the first of its kind for GR and contains valuable insights into the function of RNA binding by GR.
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subsequent regulation of downstream genes [3, 6–8]. 
Direct gene activation by GR typically happens through 
dimerization on sequence-specific DNA elements, and 
thus most studies of GR-mediated gene regulation have 
focused on this interaction [9–13]. However, several 
groups identified an additional, unexpected biochemi-
cal activity of direct RNA binding by GR to a common 
underlying motif of hairpin RNAs [2, 14–16]. Further, in 
vitro studies revealed structure-specific binding to RNA 
that is competitive with DNA [17]. The implications of 
these findings are poised to change how we think about 
both GR biology and, to a greater extent, the regulation 
of many transcription factors, by adding another layer to 
GR’s complex regulatory pathway. The objective of this 
data set is to better define the relationship between GR-
RNA binding and GR transcriptional action through the 
quantification of the dexamethasone-driven transcrip-
tome in the context of wild-type (wt) and RNA-binding 
deficient GR.

Data description
To measure the effect RNA binding by GR has on the GR-
regulated transcriptome, we performed RNA sequenc-
ing of 4-thiouridine-labeled RNAs (4sU-seq, Data set 1, 
Table 1) after dexamethasone treatment in cells express-
ing a separation-of-function GR mutant. We employed 
U2OS cells stably expressing wt GR-HaloTag or a K492A 
mutant of GR that has an 11-fold reduction in RNA affin-
ity based on in vitro binding assays [17]. Due to a mod-
erate reduction in DNA affinity in this mutant, we also 
used cells expressing an R470A GR mutant that exhibits 
similar reduction in DNA affinity but maintains RNA 
affinity. As U2OS cells express low levels of endogenous 
GR and show impaired glucocorticoid response, we can 
compare transcriptional responses to dexamethasone 
between wt GR and our mutant to attribute the func-
tion of GR-RNA binding to known regulatory pathways. 
After stable integration of the GR-HaloTag constructs, 
cells were sorted using FACS and sorted cell fractions 
were selected to match GR-HaloTag expression between 
cell lines by immunofluorescence. This sorting was done 
to minimize the impact of GR-HaloTag abundance on 
differential dexamethasone response between cell lines. 

After selecting cell lines with similar GR-HaloTag expres-
sion, cells were incubated with 100 nM dexametha-
sone for 0, 1, 2, or 3  h. Zero-hour dexamethasone cells 
received an equivalent volume of ethanol (0.01%). Dur-
ing the final hour of dexamethasone treatment, cells were 
given 200 µM 4sU to label recently transcribed RNAs. 
Zero-hour dexamethasone cells treated with 200 µM 4sU 
for 1  h immediately after adding ethanol. At the end of 
treatment, cells were lysed with TRIzol and RNAs were 
purified. 4sU-labeled RNAs were then biotinylated and 
isolated using magnetic streptavidin beads. A detailed 
4sU-seq protocol can be found in Data file 1, Table 1.

Libraries for were prepared using the KAPA RNA 
HyperPrep kit with RiboErase. The dual index adapters 
included unique molecular identifiers (UMIs). Library 
sizes were about 330  bp and they were sequenced for 
2 × 150  bp paired-end reads on an Illumina NovaSEQ 
6000 by the University of Colorado School of Medicine 
Genomics and Microarray Core Facility. Reads were 
tagged with UMIs using UMI-tools (v1.1.2) and trimmed 
using Trim Galore (v0.6.6) with the following parame-
ters: --2colour 20, --paired [18, 19]. Trimmed reads were 
then aligned to the hg38 genome assembly using STAR 
(v2.7.3a) and deduplicated with UMI-tools (v1.1.2) using 
the following parameters: --paired, --unpaired-reads dis-
card, --chimeric-pairs discard [18, 20]. FeatureCounts 
(Rsubread v2.0.1, R v4.0.3) was used to count dedupli-
cated read coverage over exons (Data file 2, Table 1) [21]. 
Quality control analyses were performed with FastQC on 
trimmed reads and RSeQC on aligned reads before dedu-
plication and packaged together with MultiQC (Data 
file 3, Table 1) [22–24]. All scripts used for data process-
ing, including options and flags used at each step, can be 
found on GitHub (Data set 2, Table 1).

Limitations
To meaningfully compare transcriptomic changes 
between the different GR-expressing cell lines, it was 
crucial to first match GR expression between cell lines. 
We sorted cells and selected fractions that had the same 
nuclear signal after dexamethasone treatment based on 
immunofluorescence. Nuclear signal was used to match 

Table 1  Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data set 1 Effect of reduced glucocorticoid receptor-RNA 
affinity on dexamethasone treatment

FASTQ files (fastq.gz) NCBI GEO (https://identifiers.org/geo:GSE216337) [25]

Data file 1 4sU-seq protocol PDF (.pdf ) Zenodo (https://doi.org/10.5281/zenodo.7349186) [26]

Data file 2 Count matrix of deduplicated reads over exons CSV (.csv) NCBI GEO (https://identifiers.org/geo:GSE216337) [25]

Data file 3 MultiQC quality report HTML (.html) Zenodo (https://doi.org/10.5281/zenodo.7269135) [27]

Data set 2 Data processing scripts Bash script (.sh), R code 
(.r)

Zenodo (https://doi.org/10.5281/zenodo.7349062) [28]

https://identifiers.org/geo:GSE216337
https://doi.org/10.5281/zenodo.7349186
https://identifiers.org/geo:GSE216337
https://doi.org/10.5281/zenodo.7269135
https://doi.org/10.5281/zenodo.7349062
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the amount of active GR between cell lines, but transcript 
expression of GR is higher in the mutant lines.

Abbreviations
GR	� glucocorticoid receptor
4sU	� 4-thiouridine
wt	� wild-type
UMI	� unique molecular identifier
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