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Abstract 

Objective Eutrophication poses a mounting concern in today’s world. Ceratophyllum submersum L. is one of many 
plants capable of living in eutrophic conditions, therefore it could play a critical role in addressing the problem 
of eutrophication. This study aimed to take a first genomic look at C. submersum.

Results Sequencing of gDNA from C. submersum yielded enough reads to assemble a plastome. Subsequent annota-
tion and phylogenetic analysis validated existing information regarding angiosperm relationships and the positioning 
of Ceratophylalles in a wider phylogenetic context.
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Introduction
Ceratophyllum submersum L., commonly known as soft 
hornwort, is a subaquatic plant whose genus is the only 
extant member in the order of Ceratophyllales, placed as 
a sister clade to the eudicots [1, 2]. It is native to Europe, 
Africa and Asia and grows in stagnant freshwater bod-
ies [3]. Morphological features include long, branch-
ing stems that can reach up to several metres in length 
and leaves that are forked into narrow, filament-like 

segments that grow in multiple whorls around the stem 
(Fig. 1) [4]. The plant is often green, but can vary in col-
our from brown to red depending on environmental con-
ditions. Anthocyanins contribute to the colouration of 
many plant species, and metabolic analyses have detected 
several derivatives in C. submersum [5–7]. It thrives in 
eutrophic conditions, characterised by low light inten-
sity and high nutrient levels [8, 9]. Eutrophication of 
aquatic environments is indicated by the accumulation 
of nutrients albeit other parameters and multiple classi-
fication systems exist [10]. Due to anthropogenic effects, 
the occurrences of eutrophic environments are rising 
which poses a problem e.g. for greenhouse gas emissions 
[11]. In aquatic systems, eutrophication induces harmful 
algal blooms (HABs) which are responsible for environ-
mental hazards like the Oder ecological disaster in 2022 
[12]. Due to its capabilities, C. submersum competes 
with other phototrophic organisms capable of living in 
eutrophic conditions. This suggests that it may inhibit the 
formation of HABs despite its vulnerability to them [7].
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While a low coverage skimming report has been per-
formed previously [13], the results appear to be missing 
in the established sequence databases. Here, we utilised 
nanopore long-read sequencing to obtain the plastome 
sequence of C. submersum and provide a thorough anno-
tation of its genetic content. This analysis allowed us to 
place the species in a phylogenetic context which informs 
future studies.

Results and discussion
A total of 0.48 Gbp of sequencing data was generated 
from 94,100 long reads. Out of this, 1,544 reads rep-
resenting the C. submersum plastome were extracted 
(Additional file  1, PRJEB62706), accounting for 3.3% of 
the data. Due to the limitations of the Flye assembler 
used by ptGAUL, only 752 reads (covering about 1.68% 
of the total data) were utilised for the assembly, as it can 
only accommodate up to 50x coverage of the estimated 
assembly size. Considering these factors, only 0.27 Gbp 
of sequencing data are required to assemble an approxi-
mately 160 kbp sized plastome, provided that the ratio 
of plastid DNA to nuclear DNA does not exceed 3%. We 
calculated that about 0.8 Gbp of total genomic sequenc-
ing data would be adequate for cases where the plastid 
DNA content is even lower (1%). High-quality assem-
blies can be achieved with coverage levels lower than 50, 
so a smaller amount of data may still be sufficient. We 
inferred a sequencing goal of 1 Gbp to enable the assem-
bly of a plastome sequence without prior plastid purifica-
tion. If fresh leaf material is chosen, a higher plastid DNA 
portion should be achievable, potentially reducing the 
amount of data needed for successful assembly.

The plastome assembly of C. submersum resulted in a 
155,767 bp long sequence with a GC content of 38.26%. 
In total, 75 unique protein coding genes were annotated 
(Additional file 2). The C. submersum plastome sequence 
is 485  bp shorter than the reference plastome sequence 
of Ceratophyllum demersum L. that has a length of 

156,252  bp [14]. While the GC content is similar (C. 
demersum: 38.22, C. submersum: 38.26) the amount 
of unique annotated genes in C. submersum is smaller 
than in C. demersum (75 against 79). After the anno-
tation some predicted coding sequences were flawed 
(e.g. containing multiple stop codons). Manual evalu-
ation revealed four homopolymeric regions in which a 
frameshift would correct the annotation. Since homopol-
ymers are a frequent error type in ONT reads, manual 
correction in those regions is appropriate [15]. The com-
parison of those regions to all plastome reads suggested 
a correction of two of these regions, namely the adenine 
at position 3,094 and the thymines at position 3,143, at 
position 86,261, and at position 86,262 were inserted.

The sequencing took place on a flow cell that was previ-
ously used to analyse gDNA from Digitalis purpurea L. 
Therefore, a phylogenetic tree was calculated to validate 
clean and distinguishable sequencing data, incorporating 
our plastome assemblies for both species (D. purpurea 
data: PRJEB62706) (Fig. 2).

Multiple plastome reference sequences were cho-
sen to represent the angiosperm clade as well as Chla-
mydomonas reinhardtii as outgroup (for full list and 
references see Additional file  3). The phylogenetic tree 
(Fig. 2, for full tree see Additional file 4) classifies C. sub-
mersum close to its reference C. demersum and our D. 
purpurea plastome assembly close to the RefSeq D. pur-
purea plastome sequence  generated by Zhao et  al. [17]. 
The angiosperm clade is represented in accordance with 
the current APG IV classification except for the exact 
separation/placement of the Magnoliids and the Chlor-
anthales, which is still controversial [2]. This underlines 
the significance of plastome sequences for modern plant 
phylogenetics [18].

The plastome assembly and phylogenetic analysis pre-
sented in this study provides first steps towards genetic 
and genomic characterization of Ceratophyllum submer-
sum. Further research is needed to determine its nuclear 

Fig. 1 Ceratophyllum submersum and its habitat. A: The pond (Braunschweig, 52.28062 N / 10.54896 E) where C. submersum was collected, B: 
Whole C. submersum plant, C: Close up view of C. submersum 
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genome and to explore potential applications of this 
plant, such as its use as a valuable resource or as an agent 
to mitigate environmental hazards.

Materials and methods
Plant material, gDNA extraction and sequencing
Ceratophyllum submersum was collected from a small 
pond in Braunschweig (52.28062  N / 10.54896 E) and 
kept in cultivation at the Institute of Plant Biology at 
TU Braunschweig. The artificial pond needs occa-
sional water replenishment. Foliage from surrounding 
shrubs and dead aquatic plants lead to a high eutro-
phy (see Fig.  1A). C. submersum shoot tips (Fig.  1C) 
were harvested for gDNA extraction conducted with 
a CTAB method [19–21]. Short DNA fragments were 
depleted with the Short Read Eliminator kit (Pacific 
Biosciences). Library preparation for ONT sequencing 

was started with 1  µg of DNA that was first repaired 
with the  NEBNext® Companion Module and then 
processed according to the SQK-LSK109 protocol 
(Oxford Nanopore Technologies). For ONT sequenc-
ing, a R9.4.1 flow cell was used with a MinION. ONT 
sequencing is one of the leading sequencing technolo-
gies in plant genomics [22], and was applied in this pro-
ject to generate a complete plastome sequence based 
on long reads. Prior to C. submersum sequencing, the 
flow cell was already utilised for D. purpurea gDNA 
sequencing. Processing of raw data was performed with 
guppy v6.4.6 + ae70e8f (https:// commu nity. nanop orete 
ch. com) which internally called minimap2 v2.24-r1122 
[23] with default parameters on a graphical processor 
unit (GPU) in the de.NBI cloud to generate FASTQ 
files. Guppy was run with the default configuration of 
dna_r9.4.1_450bps_hac.

Fig. 2  Phylogenetic tree of selected spermatophytes based on plastome protein sequences. The asterisks (*) indicate plastome assemblies 
generated in this study. Within the angiosperms, the clades are differently coloured. All nodes received full bootstrapping support (100%), 
except those displaying the actual value. Please see the material and methods section for further description of the tree calculation. Visualisation 
was done in iTOL 6.7.6 [16]. The full tree including the outgroup Chlamydomonas reinhardtii can be found in the additional files (Additional file 4). 
GS = gymnosperms. The sketches are licensed by adobe and depositphotos (Standard License: https:// wwwim ages2. adobe. com/ conte nt/ dam/ cc/ 
en/ legal/ servi cetou/ Stock- Addit ional- Terms_ en_ US_ 20221 205. pdf, https:// depos itpho tos. com/ licen se. html) 

https://community.nanoporetech.com
https://community.nanoporetech.com
https://wwwimages2.adobe.com/content/dam/cc/en/legal/servicetou/Stock-Additional-Terms_en_US_20221205.pdf
https://wwwimages2.adobe.com/content/dam/cc/en/legal/servicetou/Stock-Additional-Terms_en_US_20221205.pdf
https://depositphotos.com/license.html
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Plastome assembly and annotation
The FASTQ files were subjected to a plastome assem-
bly with ptGAUL using standard parameters [23–26]. 
As reference the C. demersum plastome from the NCBI 
RefSeq database (release 216) was used [14, 27]. Since the 
ptGAUL results consist of two assemblies (one per path) 
the OGDRAW plastome maps were compared between 
the reference and the assemblies to decide which one 
is closer to the reference. The C. submersum assembly 
needed to be reverse complemented and the sequence 
start was adjusted to the C. demersum sequence. GC con-
tents of the assembly were calculated using the contig_
stats.py script [28]. For annotation, GeSeq was used (see 
Additional file 5 for parameters) [29–38]. Protein coding 
genes were extracted from the resulting GBSON.json 
file using our own script JSON_2_peptide_fasta_v1.0.py 
[39]. Frameshifts in the coding sequences of incorrectly 
translated peptide sequences were identified in two steps. 
First, all open reading frames (ORFs) were annotated 
by EMBOSS sixpack. Then, NCBI blastx results were 
mapped against the ORFs to specify the location of the 
possible frameshifts [40, 41]. Further evaluation of these 
frameshifts was conducted with the help of a read map-
ping. All plastome reads (FASTQ) were mapped against 
the plastome sequence (FASTA) with minimap2 (v2.24-
r1122, parameters: -ax map-ont --secondary = no -t 27) 
to generate a SAM file [23]. From that, a BAM file and 
its corresponding index file was generated with samtools 
1.10 [42]. The mapping was then analysed in the Integra-
tive Genomics Viewer (IGV) 2.16.1 [43]. The assembly 
underwent correction only if supported by more than a 
quarter and a minimum of ten reads.

Data preparation prior to submission was performed 
by extracting all the read IDs from the ‘new_filter_gt3000.
fa’, generated by ptGAUL, which contains all the identi-
fied plastome reads. The plastome reads were extracted 
from the FAST5 and FASTQ raw read datasets via the 
‘fast5_subset’ command from the ont_fast5_api tool and 
our custom script FASTQ_extractor_from_FAST5_map-
ping_file.py (both using default parameters) [39, 44].

Phylogenetic analysis
Reference data retrieval and phylogenetic supermatrix 
tree construction was performed by our newly developed 
Python pipeline PAPAplastomes (Pipeline for the Auto-
matic Phylogenetic Analysis of plastomes). It integrates 
established external tools for complex steps (Additional 
file  6) [45]. Reference species, closely related species 
of interest, and outgroup species can be specified via a 
config file. First, NCBI RefSeq plastome data is down-
loaded and the reference plastome peptide sequences are 
extracted from this collection. These peptide sequences 
are further combined with the peptide sequences derived 

from the assemblies representing plastomes of interest. 
The pre-OrthoFinder trimming step removes poten-
tial paralogs with the exact same sequence, sequences 
which contain asterisks, and sequences that are shorter 
than 10 amino acids (this threshold value is adjust-
able). Next, OrthoFinder v2.5.4 [46–49] is applied. Post-
Orthofinder processing includes four steps. Removal of 
outlier sequences (first step), deletion of orthogroups 
missing the species of interest or their references (second 
step), removal of orthogroups harbouring fewer species 
than the pre-defined outgroup species (third step), and 
paralog cleaning (fourth step). These steps are explained 
in more detail below. First step: Since the OrthoFinder 
results include phylogenetic trees of each orthogroup, 
outlier identification is conducted with the help of the 
Python module Dendropy v4.5.2 [50]. Per orthogroup 
the edge length for each taxon is accessed except for 
outgroup species. Based on these lengths, outliers are 
identified by the 1.5*IQR method (inter quartile range) 
i.e. sequences with a distance larger than 1.5 times the 
variation are excluded. Second step: The species of an 
orthogroup are listed and if pre-defined species are all 
either present or absent, the orthogroup will be kept. 
Otherwise, the orthogroup will be discarded. This is sug-
gested for closely related species i.e. from the same genus 
and can be specified by the user in the config file. Third 
step: Orthogroups consisting solely of the outgroup spe-
cies are exempt from this criterion. Fourth step: Among 
remaining paralogs within one species, only the longest 
sequence is kept.

The cleaned orthogroups are then aligned with MAFFT 
v7.453 (--maxiterate 1000 --localpair) [51, 52] and align-
ments are concatenated. Phylogenetic supermatrix tree 
calculation is performed by IQ-TREE (multicore version 
1.6.12 for Linux 64-bit built Aug 15 2019; with the ‘-nt 
AUTO -bb 1000’ options, seed: 291,752) based on the 
concatenated alignment of all orthogroups [53–55].

Limitations
Before sequencing C. submersum, the flow cell had 
already been utilised for sequencing gDNA of D. purpu-
rea. Insufficient DNA availability hindered the complete 
sequencing and assembly of C. submersum’s nuclear 
genome. Future optimisations in DNA extraction meth-
ods dedicated to small aquatic plants could overcome 
this limitation.

Abbreviations
CDS  Coding sequence
gDNA  Genomic DNA
GPU  Graphical processing unit
GS  Gymnosperm
HAB  Harmful algal bloom
RefSeq  NCBI Reference Sequence Database
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