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diverse roles in the regulation of the genes these regula-
tory elements are targeting [2, 3].

Regulatory elements have been shown to evolve more 
rapidly than the genes they regulate [4], which suggest 
that organisms rely on rewiring gene transcription regu-
lation to quickly acquire new phenotypes. In particular, 
the cell-intrinsic innate immune system controlled by the 
interferon (IFN) cytokines has been observed to be one 
of the most rapidly evolving gene networks [5–7].

IFN molecules are released upon pathogen recognition, 
and once sensed by cell membrane receptors trigger the 
formation of transcription factor complexes composed 
by members of the IRF and STAT protein families, which 
then regulate the transcription of interferon stimulated 

Objective
Eukaryotic gene transcription is controlled by promoters 
and enhancers that are proximal and distal, respectively, 
to the genes they regulate [1]. When these regulatory ele-
ments are actively used by the cell to control gene expres-
sion, they are transcribed, typically from both DNA 
strands originating from a shared RNA polymerase load-
ing locus. These nascently transcribed molecules play 
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Abstract
Objectives The interferon-triggered innate immune response has been observed to be under strong diversifying 
selection to counteract the many pathogens hosts have to defend against. In particular, rewiring of gene transcription 
regulation allows organisms to rapidly acquire new phenotypes by removing and adding genes into the innate 
immune gene network. Dissecting the molecular processes by which this rewiring takes place, either by changing the 
DNA regulatory elements or by changing the activity of the regulators across species, is key to better understand this 
evolutionary process.

Data description To better comprehend the evolutionary dynamics that have occurred in the initial transcriptional 
response to interferon in primates, we present Precision Run-On (PRO-seq) datasets made after 1 h of interferon-α2 
stimulation on human and rhesus macaque lymphoblastoid cell lines. Further, we tested the difference between 
using either species’ cognate interferon versus using the other orthologous interferon to account for any potential 
impacts in the interaction of the orthologous interferons with their cellular membrane receptors. This data provides 
insights into the regulatory mechanisms that drive species-specific responses to environmental perturbations, such as 
the one driven by the interactions of pathogens and their hosts.
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genes (ISGs) [8]. However, it has remained an impor-
tant question in the field how is the rewiring of gene 
transcription regulation established when evolutionary 
changes can simultaneously occur both in the regulators 
themselves, such as mutations in transcription factors, 
and in changes in the DNA regulatory sequences of the 
genes these regulators target [9]. Furthermore, biophysi-
cal studies demonstrate that varying binding affinities 
between IFN paralogs to their receptors can ensue dis-
tinct cellular responses [10, 11], which may also affect 
IFN orthologs across species.

Here we address these questions by testing the dif-
ference in the transcriptional response when using 
species-matching compared to non-species matching 
IFN-α2 treatments on cells derived from human and 
rhesus macaque, which diverged around 25 mya [12]. 
These datasets will be of value to researchers who want 
to investigate the evolutionary changes in the interferon-
triggered innate immune transcriptional response in 
primates.

Data description
We obtained precision run-on sequencing (PRO-seq) 
datasets from Epstein-Barr Virus-transformed lympho-
blastoid cell lines (LCLs) derived from both a male and 
a female individual from two primates: human (Homo 
sapiens, GM12878 and HG03077 from the Coriell Insti-
tute for Medical Research) and rhesus macaque (Macaca 
mulatta, Mm 150 − 99 and Mm 290 − 96 generously 
shared by Yoav Gilad from the University of Chicago) 
(see Data set 1 in Table  1). Each primate cell line was 
treated for 1 h with either the vehicle bovine serum albu-
min (BSA), with their cognate species-matching IFN-α2, 
or with the other primate’s orthologous IFN-α2. Libraries 
were prepared as described in [13] with minor modifica-
tions, see methods file (Data file 3) for full details. Librar-
ies were sequenced on an Illumina NextSeq 500 using 
single-end sequencing, on which an average of 36 million 
reads per library were obtained. Raw reads (available at 
NCBI GEO under accession number GSE214304) were 
assessed for quality (see data file Data file 1) and mapped 

to the respective species genomes (hg38 for Homo sapi-
ens and rheMac10 for Macaca mulatta) (see Data file 3 
for full details).

Briefly, we counted reads over gene bodies using fea-
tureCounts and used DESeq2 [14] and known ISGs to 
validate that the LCLs responded as expected to the IFN-
α2 treatments. Additionally, we assessed the consistent 
simulation of key transcription factors upon IFN-α2 by 
first detecting bidirectionally transcribed loci using Tfit 
[15] and dREG [16]. These bidirectionally transcribed 
loci, roughly corresponding to enhancers and promot-
ers, are then fed to TFEA to identify transcription factors 
responding to IFN-α2 treatment [17] (see Data file 3 for 
full details).

The human IFN-α2 and rhesus IFN-α2-treated LCLs 
display a typical type I interferon stimulation transcrip-
tional response compared to the BSA control datasets, 
and similar to published nascent transcription response 
to IFN-γ on mouse embryonic fibroblasts (MEFs) [18] 
(see Data file 2, Data file 4). The human IFN-α2-treated 
datasets, however, show a greater interferon stimula-
tion magnitude than the rhesus IFN-α2-treated datasets, 
regardless of the primate LCL used.

Limitations
The human IFN-α2 protein was obtained from Protein-
tech Cat. no. HZ-1066, whereas the rhesus macaque IFN-
α2 was obtained from PBL Assay Science Ca. no. 16105-1. 
Each manufacturer tested their purified protein activities 
using different assays, with the human IFN-α2 protein 
purification having been tested with a “dose-dependent 
cytotoxicity of the human TF-1 cell line (human eryth-
roleukemic indicator cell line)” [19], and the rhesus IFN-
α2 protein purification with a “cytopathic inhibition assay 
on Bovine (MDBK) kidney cells with vesicular stomati-
tis [virus] (VSV)” [20]. Discrepancies in the bioactivity 
assay details may have resulted in unequal magnitude 
of IFN-dependent transcriptional responses even when 
using 100 units/mL for both the human and rhesus IFN-
α2 protein treatments. To this end, we observe that both 
cell lines responded more strongly to the human IFN-α2, 

Table 1 Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier 
(DOI or accession number)

Data file 1 Quality control assessment of data sets sequencing. MultiQC file (.html) Figshare (https://doi.org/10.6084/
m9.figshare.21253245.v1) [21]

Data file 2 Assessment of interferon stimulation of data sets. PDF file (.pdf ) Figshare (https://doi.org/10.6084/
m9.figshare.21287637.v1) [22]

Data file 3 Detailed methods file. PDF file (.pdf ) Figshare (https://doi.org/10.6084/
m9.figshare.21287652.v1) [23]

Data file 4 DESeq2 results tables Tab separated files (.tsv) Figshare (https://doi.org/10.6084/
m9.figshare.23971908) [24]

Data set 1 PRO-seq datasets of Homo sapiens and Macaca mulatta LCLs 
treated with either BSA, human IFN-α2, or rhesus IFN-α2.

fastq (.fastq.gz) NCBI GEO (https://identifiers.org/
geo:GSE214304) [25]

https://doi.org/10.6084/m9.figshare.21253245.v1
https://doi.org/10.6084/m9.figshare.21253245.v1
https://doi.org/10.6084/m9.figshare.21287637.v1
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https://doi.org/10.6084/m9.figshare.21287652.v1
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as observed by the number of differentially transcribed 
genes and by the magnitude of the ISGs fold-change.

While we assayed two distinct cell lines per species, 
one female and one male, each biological sex was only 
assayed once.

Abbreviations
PRO-seq  Precision Run-On followed by sequencing
IFN-α2  Interferon alpha2
BSA  Bovine Serum Albumin
PBS  Phosphate-Buffered Saline
ISGs  Interferon Stimulated Genes
LCL  Lymphoblastoid Cell Line
MEFs  Mouse Embryonic Fibroblasts
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