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Introduction
Ventricular arrhythmia can lead to the formation of 
scar tissue in patients with myocardial infarction, which 
may have fatal consequences. Research from the World 
Health Organization (WHO) suggests that the number 
of individuals with cardiovascular disease (CVD) in the 
United States and other nations is projected to rise by 2.5 
times by the close of 2050 [1, 2]. A rupture in the myocar-
dium can occur during a myocardial infarction due to the 
formation of scar tissue on its wall. The function of the 
left ventricular (LV) pump is influenced by the size of the 
infarct. Consequently, the dimensions and coverage of 
the scar tissue play a pivotal role in determining the prog-
nosis for patients who have suffered their first myocardial 
infarction. It’s essential to understand the LV remodel-
ing process [3–7]. Excessive infarcts cannot endure the 
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Abstract
Objective Scar tissue is an identified cause for the development of malignant ventricular arrhythmias in patients of 
myocardial infarction, which ultimately leads to cardiac death, a fatal outcome. We aim to evaluate the left ventricular 
endocardial Scar tissue pattern using Radon descriptor-based machine learning. We performed automated Left 
ventricle (LV) segmentation to find the LV endocardial wall, performed morphological operations, and marked the 
region of the scar tissue on the endocardial wall of LV. Motivated by a Radon descriptor-based machine learning 
approach; the patches of 17 patients from Computer tomography (CT) images of the heart were used and 
categorized into “endocardial Scar tissue” and “normal tissue” groups. The ten feature vectors are extracted from 
patches using Radon descriptors and fed into a traditional machine learning model.

Results The decision tree has shown the best performance with 98.07% accuracy. This study is the first attempt to 
provide a Radon transform-based machine learning method to distinguish patterns between “endocardial Scar tissue” 
and “normal tissue” groups. Our proposed research method could be potentially used in advanced interventions.
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mechanical strains and are prone to rapid ruptures, lead-
ing to dire outcomes. Infrequent infarcts can result in a 
thinning of the myocardial wall, intensifying the stresses 
on the cardiac wall. Designing medications to enhance 
cardiac function or remodeling has proven to be a signifi-
cant challenge.

This challenge arises due to the complexities associ-
ated with understanding the formation and properties 
of the infarct scar, as well as how its structure impacts 
cardiac mechanics, electrical conduction, and reflexive 
hemodynamic responses in clinical settings. Numerous 
innovative therapies are in development to evaluate scar 
tissue. In the computational domain, many studies have 
focused on detecting scars on the myocardium wall using 
magnetic resonance (MR) imaging rather than com-
puter tomography (CT) modalities. In terms of algorith-
mic approaches, most have relied solely on the standard 
deviation and mean intensity value techniques for scar 
detection. Our preference for CT modalities stems from 
their speed and widespread availability. CT scans operate 
by capturing multiple X-ray images from different per-
spectives. We aim to bridge the gap between the Radon 
descriptor and machine learning algorithms in discerning 
patterns of normal and scarred tissue in the left ventricu-
lar endocardium. The subsequent sections of this docu-
ment will detail our methods, provide a summary of our 
approach, and discuss the results and conclusions of our 
study.

Methods
Data acquisition and automatic segmentation of LV
The Philips computerized tomography device was used 
to capture cardiac CT images for 17 individuals (both 
males and females) with A-fib, aged between 50 and 62. 
This device recorded ten sets of timed frames at the same 
location using various contrast agents, spanning an entire 
cardiac cycle. Each data set comprised 409 images, each 
with a resolution of 512 × 512 pixels. We selected cardiac 
CT images with delayed enhancement for our dataset. 
After extracting the pertinent dataset, which included 
149 CT images showcasing the LV portion, we omitted 
a few layers due to their irrelevance. The study adhered 
to the guidelines set by the Institutional Review Board of 
National Yang-Ming University Hospital, and all partici-
pants provided informed consent.

To automatically segment the LV, we employed the 
Segment CT software [5]. This software can pinpoint 
the LV on short-axis stacks by inserting reference points 
during the reconstruction process. We utilized math-
ematical calculations, specifically the standard deviation 
(SD) and the average pixel value, to identify potential 
scar areas in the dataset. This approach was informed 
by literature, which suggests that if the intensity value 
of a region exceeds three SDs above the mean intensity 

of a healthy myocardium, scar tissue is likely present [5, 
8, 9]. Our focus was on assessing the pixel value of the 
LV myocardium wall region, as each pixel, represented 
in Hounsfield units (HU), offered valuable insights for 
our research. Literature indicates that HU provides a 
straightforward method for tissue characterization. The 
tissue density corresponds to the HU value, which in turn 
is directly related to the degree of x-ray attenuation for 
each pixel in the CT image [6, 10, 11]. In this phase, we 
automated the process of localizing and cropping the 
selected myocardium wall corresponding to the LV, and 
we calculated both the SD and average values.

Implementation of morphological operations and patch 
creation
In this phase, we employed fundamental morphological 
operators such as erosion, dilation, opening, and closing 
to gather information [12, 15]. We established the criteria 
as follows: a pixel value that qualifies as a contrast area 
in the given dataset must exceed two standard deviations 
(SD) and one average value. With this approach, we were 
able to distinctly visualize the contrast areas. We then 
extracted 25 patches, each measuring 25 × 25 dimensions 
that encompassed both the scar region on the LV and 
areas of normal or non-scarred tissue.

Radon descriptor and texture feature extraction
The term “content-based image retrieval” (CBIR) denotes 
the process of searching for and analyzing the content 
within an image. This content can be identified using 
various criteria such as color, shape, texture, and more. 
CBIR is a pivotal aspect of computer vision research, 
especially in advanced medical systems that leverage 
human expertise to harness the computational power of 
computers [13]. The Radon transform, an integral trans-
form, is applicable in CBIR endeavors. It determines the 
projection of an image in multiple directions [14]. This 
transform is adept at elucidating the visual characteristics 
of medical images [15, 16]. Challenges in this domain can 
be addressed using the Radon descriptor in conjunction 
with content-based medical image retrieval (CBMIR). 
After extraction, patches of each type were processed to 
generate Radon images for every patient using the Radon 
descriptor. For this purpose, we utilized the MATLAB 
R2018a platform in our study. By leveraging the local 
binary pattern (LBP) method for numerical data, we 
extracted texture features from the Radon images. This 
method is commonly employed in face detection and 
pattern recognition tasks. The LBP operator converts an 
image into a set of integer labels [15–18], which repre-
sent the image’s micro-features. These extracted numeri-
cal features were subsequently inputted into traditional 
machine learning models [Fig. 1].
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Results and discussion
In this study, we investigated an alternative method for 
automatically predicting endocardial Scar tissue pat-
tern on the LV myocardial wall. According to published 
research, the function and remodeling of the LV endo-
cardium are significantly influenced by the presence of 
scar tissue. Each slice’s average myocardium wall pixel 
value was computed, along with the SD, providing a total 
dataset average of 58.77 and an SD of 20.75. This was the 
most crucial step. We then calculated the average, SD, 
and number of pixels present in the specific growing area 
of the dataset, which is the myocardium wall of the LV, as 
well as the standard deviation for the entire population, 
and these values were found to be 59.89 and 21.2, respec-
tively, using the region growing algorithm on the origi-
nal dataset. This indicates that we conducted the analysis 
correctly because our results match those of the earlier 
studies [5, 8]. In the following phase, we ran the image 
processing morphological algorithm, which includes 
erosion, dilation, closing, and opening. We considered 
the threshold value of the intensity mean, which trans-
forms the image into binary form. We discovered black 
and white spots, and white spots represent higher inten-
sity which signifies a more high contrast area. Finally, we 
identified the location where there is a higher pixel value 
that would indicate the location of scar tissues. All endo-
cardial Scar tissue and normal patches were then fed into 
the radon based machine learning to generate the Radon 
descriptors images. Numerical data of features were 
then extracted, and dissimilarity Wasserstein distance 
between normal and endocardial Scar tissue was calcu-
lated, giving a result of 9.05. These data were then sent to 
the supervised learning traditional models to fast predic-
tion of the endocardial Scar tissue and normal/ non scar 
tissue pattern. The numerical feature data was fed into 
three classifiers: Decision Tree, Support vector machine 
(SVM), and Logistic Regression. A 5-fold cross-validation 
was used to evaluate the performances of these three 
algorithms. The development and performance of the 

model are carried out by the parameters like sensitivity, 
specificity, and accuracy.

Decision tree has shown the most promis-
ing results with 95.07% specificity, 96.08% 
sensitivity, and 98.07% accuracy with these hyper param-
eters (class_weight = classweight, max_depth = maxdepth, 
min_samples_split = minsamplessplit, min_samples_
leaf = minsamplesleaf, max_leaf_nodes = maxleafnodes). 
The other classifier algorithms such as SVM and Logistic 
Regression have not shown good performance.

Limitations of the study Only a few A-fib patients were 
used in our study. The information was evaluated under 
the direction of cardiologists.
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Fig. 1 Workflow of predicting the left ventricular endocardial scar tissue pattern using Radon descriptor-based machine learning
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