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Abstract 

Objectives In this paper, a numerical scheme is designed for solving singularly perturbed Fredholm integro-differen-
tial equation. The scheme is constructed via the exact (non-standard) finite difference method to approximate the dif-
ferential part and the composite Simpson’s 1/3 rule for the integral part of the equation.

Result The stability and uniform convergence analysis are demonstrated using solution bound and the truncation 
error bound. For three model examples, the maximum absolute error and the rate of convergence for different values 
of the perturbation parameter and mesh size are tabulated. The computational result shows, the proposed method 
is second-order uniformly convergent which is in a right agreement with the theoretical result.
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Introduction
Numerous phenomenons in science and engineering 
are characterized by a rapid transition of the observ-
able quantity, such as shock waves in fluid movements, 
boundary layer flow along the floor of a body, and edge 
results in elastic plate deformation. The mathematical 
models describing these phenomena incorporate a small 
parameter(s), and the effect of these parameter(s) dis-
plays a sudden alternate of the dependent variable, taking 
place within a small region. The solution of the boundary 
layer flow problem and that of the elastic plate are char-
acterized by the reality that the small perturbation has an 
observable impact solely in the vicinity of the boundary, 
and therefore, one uses the term “singular perturbations 
of boundary layer type” [14].

Singularly perturbed differential equations are typically 
characterized by a small parameter ( ε ) multiplying some 
or all of the highest-order derivative terms in the differ-
ential equation. In general, the solutions to such equa-
tions exhibit multi-scale phenomena [20]. Within certain 
thin sub-regions of the domain, the scale of some deriva-
tives is significantly larger than other derivatives [10, 
27]. These thin regions of rapid change are referred to as 
boundary layers [1].

Many mathematical formulations in natural science, i.e., 
the study of fluids, biology, and chemical kinetics, contain 
integro-differential equations [5, 21, 23, 24]. It can be clas-
sified into two types, i.e., Fredholm and Volterra equa-
tions. Volterra equations have the upper bound limit as a 
variable, while the Fredholm equation has a fixed bound 
of limits. Numerous works on the numerical treatment 
of Fredholm/Volterra integral equations have been devel-
oped. To list a few of them: In [6] a fast multiscale Galerkin 
method is developed. In [13] several numerical approaches 
are proposed for the solution of Fredholm integro-differ-
ential equations modelling neural networks. The solu-
tion strategy is to use expansions onto standard cardinal 
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basis functions and the collocation method. The Adomian 
decomposition method is used in [15], an iterative method 
based on the least square QR factorization method is used 
in [16], a comparison between the variational iteration 
method and trapezoidal rule is discussed in [25].

In this paper, we focus on singularly perturbed Fred-
holm integro-differential equations. Singularly perturbed 
integral equations or integro-differential equations are 
shown in the mathematical model of population variabil-
ity, polymer rhythm, and glucose tolerance [7]. In particu-
lar, the singularly perturbed Fredholm integral equation is 
given by optimal control problems [22]. It is known that, 
unless strong constraints are made on the step size of a 
discretization, most of the classical numerical methods 
are not fit to handle the problems with a small parameter 
multiplying the derivative. The truncation error becomes 
unbounded as the perturbation parameter gets small. Due 
to this, the numerical treatment of singularly perturbed 
problems presents severe difficulties that have to be 
addressed to ensure accurate numerical solutions [4]. As 
a result, in recent years, few works on the numerical solu-
tion of singularly perturbed Fredholm/Volterra integral 
equations have been recorded in the literature [11, 12]. 
Durmaz et al. [8] developed a fitted difference scheme on 
Shishkin mesh using interpolating quadrature rules and 
an exponential basis function for the numerical treatment 
of the singularly perturbed Fredholm integro-differential 
equation with mixed boundary conditions.

To solve the initial-value problem for a singularly per-
turbed Fredholm integro-differential equation, Amirali-
yev et  al. [2] proposed a fitted finite difference scheme 
on a uniform mesh. The difference scheme was via the 
method of integral identities with the use of exponen-
tial basis functions and interpolating quadrature rules 
with the weight. The method exhibits a first-order uni-
form convergence. Amiraliyev et al. in [1] applied a fitted 
mesh method for solving the singularly perturbed Volt-
erra delay-integro-differential equation. The difference 
scheme was constructed based on the method of integral 
identity by using interpolating quadrature rules.

Kudu et al. in [17] constructed a numerical method for 
first-order singularly perturbed delay integro-differential 
equations. They used implicit difference rules to discre-
tize the differential part and composite quadrature rules 
for the integral part. The authors in [7] presented a dif-
ference scheme to solve singularly perturbed Fredholm 
integro-differential equations. The difference scheme was 
constructed via the method of integral identities using 
interpolating quadrature rules with remainder terms in 
integral form. Their method is first-order convergent. Ami-
raliyev et al. [3] proposed a fitted finite difference scheme 
on the uniform mesh to solve the problem in (1). The dif-
ference scheme was constructed via the method of integral 

identities with the use of exponential basis functions and 
interpolating quadrature rules with weight and remainder 
terms in integral form. They discussed the convergence 
of the method and showed that it has first-order conver-
gence. On the other hand, Durmaz et al. [9] proposed an 
exponentially fitted difference scheme on Shishkin mesh 
for the numerical solution of the problem in (1). The fitting 
factor was introduced via the method of integral identities 
with the use of exponential basis functions and interpolat-
ing quadrature rules with weight and remainder terms in 
integral form.

The objective of this paper is to develop an accurate 
and uniformly convergent numerical method for solving 
singularly perturbed Fredholm integro-differential equa-
tion. We used an exact (non-standard) finite difference 
method together with a composite Simpson’s 1/3 rule for 
approximating the problem; we established the stability 
analysis and the uniform convergence of the scheme.

Notation 1.1 The parameter C in this paper is a generic 
positive constant that is independent of the perturbation 
parameter ε and the mesh parameter h = 1

N  . The norm ‖.‖ 
used in this paper is the maximum norm which is defined 
as �g� = maxx∈[0,l] |g(x)|.

Problem statement
We considered a singularly perturbed Fredholm integro-
differential equation (SPFIDE) of the form:

where ε ∈ (0, 1] is the perturbation parameter and � , A, B 
are given constant. It ia assumed that a(x) ≥ α > 0 , f(x)  
and kernel function K(x,  s) are the sufficiently smooth 
functions satisfying certain regularity conditions to be 
specified. Under these conditions, the solution u(x) of (1) 
exhibits a boundary layer at x = 0 and x = l [3].

Properties of the continuous solution
In this subsection, we analyse some properties of the 
continuous solution (1) which guarantee the existence 
and uniqueness of the exact solution. A replication of 
this property in the discrete form is used to analyze the 
numerical method which is presented in “Numerical dis-
cretization” section.

Lemma 2.1 [9, 17] (The maximum principle) Let 
u ∈ C2[0, l] ∩ C0[0, l], and

(1)

Lεu := − εu′′(x)+ a(x)u(x)

+ �

∫ l

0

K (x, s)u(s)ds = f (x), x ∈ (0, l),

u(0) = A,u(l) = B,
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with u(0) ≥ 0,u(l) ≥ 0 and Lεu(x) ≥ 0 for x ∈ (0, l) then 
it holds that u(x) ≥ 0, x ∈ [0, l].

Lemma 2.2 [9, 17] If a, f ∈ C2[0, l], ∂
sK
∂xs ∈ C[0, l]2 , 

( s = 0, 1, 2 ) then the solution u(x) of (1) hold the following 
bounds

Definition 2.1 A numerical scheme (or method) is said 
to be exact method, if the differential equation has the 
same solution as the difference scheme at the grid point 
xi (i.e. there is no discretization error at the grid points).

Numerical discretization
In this section, we used the exact (non-standard) finite-
difference method together with composite Simpson’s 
1/3 rule to discretize the SPFIDE. The differential part 
will be approximated by using the exact finite-difference 
method. In order to construct exact finite difference 
method we follow the Mickens rules in [19]. Consider the 
constant coefficient sub-equations given by:

where a(x) ≥ α > 0 . Thus, the equation in (4) has two 
linearly independent solutions namely e(�1x) and e(�2x) 
with �1,2 = ±

√
α
ε
.

On the domain [0,  l] , using uniform mesh with mesh 
length �x = h such that �N =

{
xi = ih, i = 1, 2, ...,N ,

x0 = 0, xN = l, h =
l
N

}
 where N is the number of mesh 

points. Let us denote the approximate solution of u(x) at 
xi by Ui . The objective is to calculate a difference equation 
which has the same general solution as the differential 
equation in (4) at the grid point xi given by 
ui = A1e

(�1xi) + A2e
(�2xi) . Using the theory of difference 

equations for second order linear difference equations in 
[19], we have

substituting the values of �1and �2 and dividing both sides 
by e

√
α
ε
h − e−

√
α
ε
h , we obtain:

|�| <
α

max0≤x≤l

∫ l
0
|K (x, s)|ds

,

(2)�u� ≤ C

(3)|u(k)(x)| ≤ C

{
1+ ε

−k
2
(
e
−

√
αx√
ε + e

−
√
α(1−x)√

ε
)}

.

(4)−εu′′(x)+ αu(x) = 0,

(5)

∣∣∣∣∣∣
ui−1 e�1xi−1 e�2xi−1

ui e�1xi e�2xi

ui+1 e�1xi+1 e�2xi+1

∣∣∣∣∣∣
= 0,

which is an exact difference scheme for (4). After doing 
the arithmetic manipulation and rearrangement on (6), 
we obtain:

The denominator function for the discretization of sec-
ond order derivative is ψ2 = 4

γ 2 sinh
2(γ h

2 ) . Adopting 
this denominator function for the variable coefficient 
problem, we can write as:

Using the denominator function ψ2
i  into the main dis-

crete scheme, we obtain the difference scheme as:

Now, the truncation error of scheme (8) is given by

Taylor series expansions of the terms ui+1 and ui−1 are 
given as follows:

Using the truncated Taylor series expansions of the terms 
ui+1 and ui−1 yields

(6)ui−1 − 2cosh

(√
α

ε
h

)
ui + ui+1 = 0

− ε
ui−1 − 2ui + ui+1

4
γ 2 sinh

2(γ h
2 )

+ αui = 0, γ =
√

α

ε
.

(7)ψ2
i =

4√
a(xi)
ε

2
sinh2

(√
a(xi)

ε

h

2

)
.

(8)

LNε ui ≡− ε
ui−1 − 2ui + ui+1

ψ2
i

+ aiui

+ �

∫ l

0

Ki(s)u(s)ds = fi + R1,

LNε (ui − u(xi)) = fi − LNε ui

=

(
−εu

′′
i + aiui + �

∫ l

0

Ki(s)u(s)ds

)

−

(
−ε

ui−1 − 2ui + ui+1

ψ2
i

+ aiui + �

∫ l

0

Ki(s)u(s)ds

)
,

= −εu
′′
i + ε

ui−1 − 2ui + ui+1

ψ2
i

.

ui±1 = ui ± hu′i +
h2

2!
u′′i ±

h3

3!
u′′′i +

h4

4!
u
(iv)
i ±

h5

5!
u
(v)
i + . . .

LNε (ui − u(xi))

= −εu′′i +
ε

ψ2
i

(
h2u′′i +

h4

12
u
(iv)
i (ξ)

)

= R1, ξ ∈ (xi−1, xi+1).
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Moreover applying the composite Simpson 1/3 rule 
to the integral term in (8). In order to drive composite 
Simpson’s 1/3 rule substitute n = 2 in Newton-Cotes 
quadrature formulae in [26] obtain the following result

where K (xi, sj) = Kij u(sj) = uj for j = 0, 1, . . . , n . Now, 
the error of this method can be approximated in the fol-
lowing way.

Let the function y = K (xi, s)u(s) be continuous and 
possess a continuous derivatives in [s0, s2] . Expanding y 
about s = s0 we obtain

Therefore

From (10), (11) and (12), we get:

∫ s2

s0

K (xi, s)u(s)ds

=

h

3
[K (xi, s0)u(s0)

+4K (xi, s1)u(s1)+ K (xi, s2)],

(9)

y(x) = y0 + (s − s0)y
′
0 +

1

2
(s − s0)

2y′′0 +
1

3!
(s − s0)

3y′′′0 +
1

4!
(s − s0)

4y
(iv)
0

+ . . .

∫ s2

s0

K (xi, s)u(s)ds =
∫ 2

0

h

(
y0 + phy′0 +

(ph)2

2
y′′0 +

(ph)3

3!
y′′′0 +

(ph)4

4!
y
(iv)
0

+ . . .

)
dp

= h

[
py0 +

p2h

2
y′0 +

(ph)2

6
py′′0 +

(ph)3

24
py′′′0 +

(ph)4

120
py

(iv)
0

+ . . .

]2

0

,

= 2hy0 + 2h2y′0 +
4h3

3
y′′0 +

2h4

3
y′′′0 +

4h5

15
y
(iv)
0

+ . . . .

(10)y0 = y0,

(11)y1 = y0 + hy′0 +
h2

2
y′′0 +

h3

6
y′′′0 +

h4

24
y
(iv)
0 + . . . ,

(12)
y2 = y0 + 2hy′0 + 2h2y′′0 +

4h3

3
y′′′0 +

2h4

3
y
(iv)
0 + . . . .

(13)

h

3
[y0 + 4y1 + y2] =

h

3

[
6y0 + 6hy′0 + 4h2y′′0 + 2h3y′′′0 +

5h4

6
y
(iv)
0

+ . . . ,

]

= 2hy0 + 2h2y′0 +
4h3

3
y′′0 +

2h4

3
y′′′0 +

5h5

18
y
(iv)
0

+ . . . .

From (9) and (13) we obtain,

This is the error committed in the interval [s0, s2].
Generally, the composite Simpson’s 1/3 rule 

needs an even number of sub-divisions. Let [0,  l] be 
sub-divided into N even number of sub-divisions, 
0 = s0 < s1 < s2 < · · · < sN = l , the integral over the 
whole interval is found by adding these integrations and 
is equal to

∫ s2

s0

yds −
h

3
[y0 + 4y1 + y2] =

−1

90
h5y

(iv)
0 .

We obtain the errors in the intervals [0, l] as

� sN

s0

yds =
h

3


y0 + 4

N/2�
j=1

y2j−1 + 2

(N/2)−1�
j=1

y2j + yN


.

R2 =
−1

90
h5
[
y
(iv)
0

+ y
(iv)
2

+ · · · + y
(iv)
N−2

]
=

−l

180
h4u(iv)(ξ), ξ ∈ [0, l],
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where u(iv)(ξ) is the largest value of the N-quantities 
on 4th derivatives. Therefore, the integral term in (8) is 
approximated as:

From (8) and (14) for i = 1, 2, . . .N − 1, we have the fol-
lowing relation

where R = −R1 − R2 and

Based on (15) we propose the following difference 
scheme for approximating (1).

Lastly, from (16) the linear system equations for 
u1,u2,u3, . . . ,uN−1 are generated. Therefore, the gener-
ated system of linear algebraic equations can be written 
in matrix form of

(14)

� l

0

K (xi, s)u(s)ds =
h

3


4

N/2�
j=1

K (xi, s2j−1)u(s2j−1)

+2

N/2−1�
j=1

K (xi, s2j)u(s2j)




+
h

3
(K (xi, s0)u(s0)

+K (xi, sN )u(sN ))+ R2.

(15)

LNε ui := −ε
ui−1 − 2ui + ui+1

ψ2
i

+ aiui + �h

N∑
j=0

ηjKijuj = fi − R,

ηj =




1

3
, for j = 0,N ,

4

3
, for j = 1, 3, 5, . . . ,N − 1,

2

3
, for j = 2, 4, 6, . . . ,N − 2.

(16)

LNε ui = −ε
ui−1 − 2ui + ui+1

ψ2
i

+ aiui + �h

N∑
j=0

ηjKijuj = fi, i = 1, 2, . . .N − 1,

u0 = A,uN = B.

where M and S are coefficient matrix, F is a given func-
tion and u is an unknown function which is to be deter-
mined. The entries of M, S and F are given as:

and

Stability and convergence analysis
In this section, we need to show the discrete scheme in 
(16) satisfy the discrete maximum principle, uniform 
stability estimates, and uniform convergence. The dif-
ference operator, LNε  satisfies the the following lemma.

(17)(M + S)u = F ,

M =




aii = 2ε

ψ2
i

+ a(xi), for i = 1, 2, . . . ,N − 1,

aii+1 = −ε

ψ2
i

, for i = 1, 2, . . . ,N − 2,

aii−1 = −ε

ψ2
i

, for i = 2, 3, . . . ,N − 1,

S =





4�h
3
Ki,2j−1, j = 1, 2, . . . , N

2
,

2�h
3
Ki,2j , j = 1, 2, . . . , N

2
− 1,

F =




f1 −
�
(�hη0K1,0 − ε

ψ2
1

)A+ �hηNK1,NB
�
,

fi − �h
�
η0Ki,0A+ ηNKi,NB

�
, for i = 2, 3, . . . ,N − 2,

fN−1 −
�
�hη0KN−1,0A+ (�hηNKN−1,N − ε

ψ2
N

)B

�
.

Lemma 4.1 (Discrete maximum principle) Assume 
that the mesh function �i satisfies �0 ≥ 0 and �N ≥ 0.
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Then LNε Ψi ≥ 0 , i = 1, 2 . . . ,N − 1 , implies that �i ≥ 0 , 
∀i = 0, 1, . . . ,N .

Proof   Let k be such that �k = min�i and suppose that 
�k < 0 . Evidently, k /∈ {0,N } , �k ≤ �k+1 and �k ≤ �k−1 . 
If ψ2

i = 4√
a(xi)
ε

2 sinh
2(

√
a(xi)
ε

h
2 )

 , it follows that

 
which is a contradiction. It follows that �k ≥ 0 , and thus 
that �i ≥ 0, ∀i = 0, 1, . . . ,N  .  �

The uniqueness of the solution is guaranteed by this 
discrete maximum principle. The existence follows easily 
since, as for linear problems, the existence of the solution 
is implied by its uniqueness [12]. The discrete maximum 
principle enables us to prove the next lemma which pro-
vides the boundedness of the solution.

Lemma 4.2 If ui is the solution of the discrete problem 
(16) then it admits the bound

LNε �k = −εδ2�k + ak�k + �h




N�
j=0

ηjKij


�k ,

= −ε
Ψk+1 − 2�k +�k−1

ψ2
i

+ ak�k + �h




N�
j=0

ηjKij


�k ,

= −ε
(Ψk+1 −�k)+ (�k−1 −�k)

ψ2
i

+ ak�k

+ �h




N�
j=0

ηjKij


Ψk0,

|ui| ≤ α−1 max
xi∈[0,l]

|LNε ui| +max{|A|, |B|}.

Proof   We consider the functions 
Ψ± defined by Ψ±

i = p± ui, where 
p = α−1 maxxi∈[0,l] |LNε ui| +max{|A|, |B|}. At the 
boundaries we have

Now for �N we have

From Lemma 3.2 it follows that Ψ±
i ≥ 0, ∀xi ∈ [0, l] , this 

completes the proof.  �

Lemma 4.3 [18] For all integers k on a fixed mesh, we 
have that

and

where xi = ih, h = 1/N , i = 1, 2, . . . ,N − 1.

Next, we analyze the uniform convergence of the 
method. From (15) and (16) for the error of the approx-
imate solution zi = ui − u(xi) we have

Ψ±
0 = p± u0 = p± A ≥ 0, Ψ±

N = p± uN = p± B ≥ 0.

LNε Ψ
±
i = −ε

�
p± ui+1 − 2(p± ui)+ p± ui−1

ψ2
i

�

+ ai(p± ui)+ �


p± h

N�
j=0

ηjKijyj




= aip± LNε ui,

= ai

�
α−1

max
xi∈[0,l]

|LNε ui| +max(|A|, |B|)
�

± fi ≥ 0, since ai ≥ α.

lim
ε→0

max
1<i<N−1

exp(−Cxi/
√
ε)

εk/2
= 0

lim
ε→0

max
1<i<N−1

exp(−C(1− xi)/
√
ε)

εk/2
= 0,

(18)

LNε zi := −ε
zi−1 − 2zi + zi+1

ψ2
i

+ aizi

+ �h

N∑
j=0

ηjKijzj , i = 1, 2, . . . ,N − 1, z0 = 0, zN = 0.
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Theorem  4.1 Under the conditions of Lemma 2.2 and 
|�| < α

max1≤i≤N
∑N

j=0 hηj |Kij |
, the solution U of (11) converges 

ε-uniformly to the solution u of (1). For the error of 
approximate solution the following bound holds

Proof   Applying the maximum principle, from (18) we 
have

hence

which implies of

Further we estimate for ‖R‖ . Thereby

�U − u� ≤ Ch2.

�z� ≤ α−1�R− �h

N∑
j=0

ηjKijzj�,

≤ α−1�R� + |�|α−1
max
1≤i≤N

N∑
j=0

hηj|Kij|�z�,

�z� ≤
α−1�R�

1− |�|α−1 max1≤i≤N
∑N

j=0 hηj|Kij|

(19)�z� ≤ C�R�.

Using the bounds on the derivatives and Lemma 4.3 gives

using the relation h2 > h4 > h6 > . . . and for the case 
O(h4) ≈ O(ε) , we obtain

The bound (20) together with (19) completes the proof. 

 �

Numerical results and discussion
To verify the established theoretical results in this paper, 
we perform an experiment using the proposed numeri-
cal scheme on the problem of the form given in (1). We 
used the double mesh principle to estimate the maximum 
absolute error.

Example 5.1 Consider the singularly perturbed prob-
lem from [3]

Example 5.2 Consider singularly perturbed problem 
from [9]

| R |≤
∣∣∣∣
(

ε

12
−

ζ

12

)
h2 +

(
l

180
−

ζ

144
+

ζ 2

240ε

)
h4 +

ζ 2

2880ε
h6
∣∣∣∣,

(20)�R� ≤ Ch2.

−εu′′ + u+
1

2

∫ 1

0

x u(s)ds = x − ε + εe
−x
ε ,

u(0) = 1,u(1) = 2− ε + εe
−1
ε .

Using truncated Taylor series expansion of the denomi-
nator function 1

ψ2
i

= 1
h2

− ζ
(12ε) +

ζ 2h2

(240ε2)
 [18] and this 

result into

| R |=| R1 + R2 |

=

∣∣∣∣∣−εu′′i +
ε

ψ2
i

(
h2u′′i +

h4

12
u(iv)(ξ)

)
+

l

180
h4u(iv)(ξ)

∣∣∣∣∣.

| R |=
∣∣∣∣(

ε

h2
−

ζ

12
+

ζ 2h2

240ε
)(h2u′′i +

h4

12
u(iv)(ξ))− εu′′i +

l

180
h4u(iv)(ξ)

∣∣∣∣

≤
∣∣∣∣(ε −

ζh2

12
+

ζ 2h4

240ε
)(u′′(xi)+

h2

12
u(iv)(ξ))− εu′′(xi)+

l

180
h4u(iv)(ξ)

∣∣∣∣

≤
∣∣∣∣
(
−

ε

12
u(4)(ξ)−

ζ

12
u′′i

)
h2 +

(
ζ 2

240ε
u′′i +

(
l

180
−

ζ

144

)
u(4)(ξ)

)
h4 +

(
ζ 2

2880ε
u(4)(ξ)

)
h6
∣∣∣∣.
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Table 1 The maximum absolute error and rate of convergence of Example 5.1

ε ↓ N → 25 2
6 2

7
2
8

2
9

2
10

2
0 4.2307e-06 1.0587e-06 2.6468e-07 6.6170e-08 1.6505e-08 4.0694e-09

1.9986 2.0000 2.0000 2.0033 2.0200

2
−2 1.7772e-05 4.4479e-06 1.1124e-06 2.7811e-07 6.9524e-08 1.7294e-08

1.9984 1.9994 1.9999 2.0001 2.0072

2
−4 2.9647e-05 7.5264e-06 1.8872e-06 4.7238e-07 1.1812e-07 2.9529e-08

1.9779 1.9957 1.9982 1.9997 2.0000

2
−6 3.1288e-05 9.3513e-06 2.4711e-06 6.2516e-07 1.5690e-07 3.9252e-08

1.7424 1.9200 1.9829 1.9944 1.9990

2
−8 1.3865e-05 4.9014e-06 2.2887e-06 7.0094e-07 1.8356e-07 4.6429e-08

1.5002 1.0987 1.7072 1.9330 1.9832

Table 2 Comparison of the maximum absolute error of Example 5.1 of the proposed scheme and the result in [3]

ε ↓ N → 25 2
6 2

7
2
8

2
9

2
10

Proposed scheme

2
0 4.2307e-06 1.0587e-06 2.6468e-07 6.6170e-08 1.6505e-08 4.0694e-09

2
−4 2.9647e-05 7.5264e-06 1.8872e-06 4.7238e-07 1.1812e-07 2.9529e-08

2
−8 1.3865e-05 4.9014e-06 2.2887e-06 7.0094e-07 1.8356e-07 4.6429e-08

2
−12 6.9416e-04 5.9134e-05 4.0396e-06 2.5841e-07 1.6151e-08 2.3062e-08

2
−16 4.0163e-03 1.2458e-03 1.8212e-04 1.5518e-05 1.0605e-06 6.7831e-08

Result in [3]

2
0 0.00343868 0.00198874 0.00110332 0.00060368 0.00030394 0.00015197

2
−4 0.01032126 0.00605257 0.00338123 0.00185003 0.00094445 0.00047551

2
−8 0.01125894 0.00660244 0.00368841 0.0020181 0.00103025 0.00051871

2
−12 0.011200979 0.00656845 0.00366942 0.00200771 0.00102495 0.00051604

2
−16 0.0112049 0.00657075 0.00367071 0.00200842 0.00102531 0.00051622

Table 3 The maximum absolute error and rate of convergence of Example 5.2

ε ↓ N → 25 2
6 2

7
2
8

2
9

2
10

2
0 1.4021e-05 3.5078e-06 8.7725e-07 2.1932e-07 5.4820e-08 1.3692e-08

1.9990 1.9995 2.0000 2.0003 2.0014

2
−4 8.3355e-05 2.0870e-05 5.2203e-06 1.3052e-06 3.2632e-07 8.1577e-08

1.9978 1.9992 1.9999 1.9999 2.0001

2
−8 2.0102e-04 5.1032e-05 1.2800e-05 3.2036e-06 8.0104e-07 2.0027e-07

1.9779 1.9953 1.9984 1.9997 1.9999

2
−12 2.5085e-04 7.6354e-05 1.9909e-05 5.0336e-06 1.2619e-06 3.1570e-07

1.7160 1.9393 1.9838 1.9960 1.9990

2
−16 2.0675e-04 7.6047e-05 1.9640e-05 5.7644e-06 1.4992e-06 3.7847e-07

1.4429 1.9531 1.7686 1.9430 1.9859

2
−20 2.1327e-04 1.0804e-04 5.2959e-05 1.9586e-05 3.9418e-06 9.8186e-07

1.9812 1.8286 1.4351 2.3129 2.0053
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Fig. 1 Solutions profile of Example 5.3 with the boundary layer 
formation as ε goes small for N = 2

8

Table 4 Comparison of the maximum absolute error of Example 5.1 of the proposed scheme and the result in Example 5.2

ε ↓ N → 25 2
6 2

7
2
8

2
9

2
10

Proposed scheme

2
0 1.4021e-05 3.5078e-06 8.7725e-07 2.1932e-07 5.4820e-08 1.3692e-08

2
−2 4.0894e-05 1.0233e-05 2.5588e-06 6.3973e-07 1.5993e-07 3.9962e-08

2
−4 8.3355e-05 2.0870e-05 5.2203e-06 1.3052e-06 3.2632e-07 8.1577e-08

2
−6 1.3785e-04 3.4622e-05 8.6671e-06 2.1673e-06 5.4188e-07 1.3547e-07

2
−8 2.0102e-04 5.1032e-05 1.2800e-05 3.2036e-06 8.0104e-07 2.0027e-07

Result in [9]

2
0 0.02882363 0.00729132 0.00183933 0.00046239 0.00011608 0.00002906

2
−2 0.02860477 0.00725102 0.0018317 0.00046143 0.00015067 0.00003785

2
−4 0.04001304 0.01015697 0.00257469 0.00065085 0.0001643 0.00004139

2
−6 0.04331213 0.01100204 0.00279084 0.00070696 0.00017896 0.00004527

2
−8 0.04342876 0.01104697 0.00280418 0.00071231 0.00018094 0.00004593

Table 5 The maximum absolute error and rate of convergence of Example 5.3

ε ↓ N → 25 2
6 2

7
2
8

2
9

2
10

2
0 4.5386e-06 1.1365e-06 2.8421e-07 7.1060e-08 1.7782e-08 4.4008e-09

1.9976 1.9996 1.9998 1.9986 2.0146

2
−4 4.7504e-05 1.1867e-05 2.9661e-06 7.4148e-07 1.8537e-07 4.6342e-08

2.0011 2.0003 2.0001 2.0000 2.0000

2
−8 2.6857e-04 6.9095e-05 1.7495e-05 4.3794e-06 1.0957e-06 2.7394e-07

1.9586 1.9816 1.9981 1.9989 1.9999

2
−12 6.6845e-04 3.0691e-04 8.1741e-05 2.0780e-05 5.2171e-06 1.3072e-06

1.1230 1.9087 1.9759 1.9939 1.9968

2
−16 1.0737e-03 2.5600e-04 1.9205e-04 8.1349e-05 2.1584e-05 5.4813e-06

2.0684 1.4466 1.2393 1.9142 1.9774

2
−20 1.2196e-03 6.5715e-04 3.0150e-04 6.8690e-05 4.9737e-05 2.0647e-05

1.9211 1.7241 2.1340 1.6578 1.6684

Example 5.3 Consider the particular problem

The maximum absolute error is calculated using the 
formula EN

ε = max0≤i≤N |uN (xi)− u2N (x2i)|, and rate of 
convergence by formula RocN = log 2

(
EN
r

E2N
r

)
.

The error analyses performed in this work reveal 
that the proposed method is second-order ε-uniformly 
convergent. This result, summarized in Theorem  4.1, 

− εu′′ + (2− e−x)u+
1

2

∫ 1

0

(
excos(πs) − 1

)
u(s)ds

=
1

1+ x
,u(0) = 1,u(1) = 0.

− εu′′ + (2− e−x)u+
1

2

∫ 1

0

(
excos(πs) − 1

)
u(s)

ds = x,u(0) = 1,u(1) = 2.
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is confirmed by numerical results displayed in Table 1, 
Table 3 and Table 5, where we computed the maximum 
absolute errors and rates of convergence for different 
values of mesh size N and perturbation parameter ε 
for Examples 5.1, 5.2 and 5.3, respectively. On Table 1, 
Table  3 and Table  5, one can observe that, as ε goes 
small the maximum absolute error of developed scheme 
becomes stable and bounded. This indicates that maxi-
mum absolute error of the scheme is independent of the 
perturbation parameter ε , implying that the scheme is 
ε-uniformly convergent. In Table  2, we compared the 
result of the proposed scheme with the results in [3] for 
Example 5.1 and in Table 4, we compared the result of 
the proposed scheme with the results in [9] for Example 
5.2. As one can observes in these tables results in the 
proposed method is better than that exists in [3] and 
[9].

In order to show the physical behaviour of the given 
problem, we give plots of the computed solutions for dif-
ferent values of ε . In Fig. 1, the profile of the solution is 
given for different values of the perturbation parameter ε 
with boundary layer formulation as ε goes small.

Conclusion
In this paper, a linear second-order singularly perturbed 
Fredholm integro-differential equation has been consid-
ered. This problem is solved numerically on a uniform 
mesh using a non-standard finite difference for the dif-
ferential part and a composite Simpson’s 1/3 rule for the 
integral part. The stability and convergence analysis of the 
proposed scheme are proven. Three examples are used to 
investigate the applicability of the scheme. Effect of the 
perturbation parameter on the solution of the problem is 
shown using figures. It is demonstrated that the method is 
uniformly convergent (i.e., independent of the perturbation 
parameter), with a second order of convergence. Perfor-
mance of the proposed scheme is investigated by compar-
ing the results with those of prior studies. It has been found 
that the proposed method gives more accurate and stable 
results.
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