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Abstract 

Objective Insulin secretion is regulated by ATP-sensitive potassium  (KATP) channels in pancreatic beta-cells. Per-
oxisome proliferator-activated receptors (PPAR) α ligands are clinically used to treat dyslipidemia. A PPARα ligand, 
fenofibrate, and PPARγ ligands troglitazone and 15-deoxy-∆12,14-prostaglandin J2 are known to close  KATP channels 
and induce insulin secretion. The recently developed PPARα ligand, pemafibrate, became a new entry for treating 
dyslipidemia. Because pemafibrate is reported to improve glucose intolerance in mice treated with a high fat diet 
and a novel selective PPARα modulator, it may affect  KATP channels or insulin secretion.

Results The effect of fenofibrate (100 µM) and pemafibrate (100 µM) on insulin secretion from MIN6 cells was meas-
ured by using batch incubation for 10 and 60 min in low (2 mM) and high (10 mM) glucose conditions. The applica-
tion of fenofibrate for 10 min significantly increased insulin secretion in low glucose conditions. Pemafibrate failed 
to increase insulin secretion in all of the conditions experimented in this study. The  KATP channel activity was meas-
ured by using whole-cell patch clamp technique. Although fenofibrate (100 µM) reduced the  KATP channel current, 
the same concentration of pemafibrate had no effect. Both fenofibrate and pemafibrate had no effect on insulin 
mRNA expression.
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Introduction
Diabetes and dyslipidemia are two major global health 
concerns; they both have strong associations with life 
threatening ischemic strokes [1].

Clinically, fibrates are used to treat dyslipidemia. In 
the Action to Control Cardiovascular Risk in Diabetes 
(ACCORD)-Lipid trial, the major fibrate drug, fenofi-
brate, improved cardiovascular disease outcomes in 
high triglyceride (TG) patients [2]. Fibrates are ligands 
of the nuclear receptor peroxisome proliferator-activated 
receptor (PPAR) α. PPAR is divided into three subtypes, 
α, β and γ [3]. PPARα is known to regulate fatty acid 
metabolism while γ is known to involve in glucose home-
ostasis and adipocyte proliferation [4, 5].

Recently, a new PPARα ligand, pemafibrate, was 
developed and used in the clinical setting for the treat-
ment of dyslipidemia. Pemafibrate has high selectivity 
to PPARα with greater activation capability compared to 
other fibrate drugs and is classified as a selective PPARα 
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modulator (SPPARMα) [6]. Clinically, pemafibrate has 
also been reported to have a significantly greater effect 
on decreasing TG levels compared to fenofibrate [7]. In 
addition to fatty acid regulation, there are reports indicat-
ing that PPARα ligands affect insulin secretion. Sun et al. 
and Dong et  al. reported that PPARα ligand enhanced 
glucose-stimulated insulin secretion from isolated rodent 
islet and beta cell line INS-1 cells [8, 9].

Insulin secretion is stimulated by the closure of ATP-
sensitive  K+  (KATP) channels in pancreatic beta cells. 
An increase of intracellular ATP induced by the glucose 
metabolism closes  KATP channels [10, 11]. The closure 
of  KATP channels leads to membrane depolarization and 
opening of voltage dependent  Ca2+ channels, which 
allows  Ca2+ influx, ultimately leading to insulin release 
[10].

Sulfonylureas and glinides, such as glibenclamide 
and repaglinide, close  KATP channels and induce insulin 
secretion; thus, they are used to treat diabetic patients 
[12, 13].

We previously reported that a PPARα ligand, fenofi-
brate, and PPARγ ligands, troglitazone and 15-deoxy-
∆12,14-prostaglandin J2, directly interact with and close 
 KATP channels and induce insulin secretion in pancre-
atic beta cell line HIT-T15 cells [14]. Since these PPAR 
ligands were able to close  KATP channels and induce insu-
lin secretion, it is possible that SPPARMα ligand pemafi-
brate may also close  KATP channels and induce insulin 
secretion. Since pemafibrate is widely used clinically, it is 
important to confirm this possibility.

Here we investigated the effects of pemafibrate, and 
those of fenofibrate, on  KATP channel activity and insulin 
secretion.

Materials and methods
Insulin secretion
MIN6 cells, kindly provided by Prof Susumu Seino 
at Kobe Univ [15], were plated in 6-multiwell plates 
(1 ×  105 cells per well) cultured with high-glucose DMEM 
medium containing 10% heat-inactivated FBS in a humid-
ified incubator with 95%  O2 and 5%  CO2 at 37 ℃. On the 
day of the experiment, the cells were starved for 1  h in 
2 mM glucose solution and replaced with 2 ml of experi-
mental medium and insulin secretion was measured by 
static incubation (10  min and 60  min). The experimen-
tal media were based on the Krebs–Ringer buffer. The 
Krebs–Ringer buffer contained (in mM) 118.5 NaCl, 2.54 
CaCl, 1.19  KH2PO4, 4.74 KCl, 25  NaHCO3, 1.19  MgSO4, 
and 10 HEPES (pH 7.4 with NaOH) with 0.1% bovine 
serum albumin. Insulin was measured using ELISA 
assay kit (Cat No. M1104, Morinaga, Yokohama, Japan). 
Fenofibrate was purchased from Sigma (Cat No. F6020, 
St. Louis, MO, USA). Pemafibrate was kindly provided by 

Kowa Co. Ltd (Nagoya, Japan). 100 mM stock solutions 
of pemafibrate and fenofibrate were prepared in DMSO 
and used in the experiment by diluting 1000 × to acquire 
100 μM concentration. All control samples contained the 
same amount of DMSO.

Electrophysiology
Electrophysiological experiments were performed as 
previously described [16–18]. All electrophysiologi-
cal measurements were performed at room tempera-
ture (22–25 ℃) using an EPC-800 patch-clamp amplifier 
(HEKA, Lambrecht/Pfalz, Germany) and pCLAMP 10 
software (Molecular Devices, CA, USA). The pipette 
solution contained (in mM) 107 KCl, 2  MgCl2, 1  CaCl2, 
10 EGTA, 10 HEPES, and 0.3 ATP (pH 7.2 with KOH), 
and the extracellular solution contained (in mM) 138 
NaCl, 5.6 KCl, 1  MgCl2, 10 HEPES, and 2.6  CaCl2 (pH 
7.4 with NaOH). The effects of 100  µM of fenofibrate 
and pemafibrate on  KATP channel currents were evalu-
ated using the standard whole-cell technique by applying 
a holding potential of −  70  mV with ± 10  mV steps at a 
duration of 250  ms. Data were analyzed using Clampfit 
software (Molecular Devices).

Reverse transcription‑quantitative polymerase chain 
reaction (qRT‑PCR) analysis
The MIN6 cells were exposed to 100  µM fenofibrate or 
pemafibrate for 2  h. Following the application of drugs, 
total RNA was isolated using a RNeasy minikit (Cat No. 
74104, QIAGEN, Hilden, Germany) and Monarch RNA 
Purification Columns (Cat No. T2007, New England 
BioLabs Japan, Inc., Massachusetts, USA). c-DNA syn-
thesis was performed using M-MLV (Cat No. 28025013, 
Thermo Fisher Scientific, Massachusetts, USA), RNa-
seOUT Recombinant Ribonuclease Inhibitor (Cat No. 
10777019. Thermo Fisher Scientific, Massachusetts, 
USA), and dNTP (Cat No. 200415, Agilent Technolo-
gies, Texas, USA). A quantitative RT-PCR assay was 
performed using the TB Green Premix Ex Taq II (Tli 
RNaseH Plus, Cat No. RR820, Takara Bio Inc., Shiga, 
Japan). The cycling condition was as follows: initial dena-
turation at 95 ℃ for 30s, then 40 cycles each at 95 ℃ for 
5s, 56 ℃ for 10s, and 72 ℃ for 15s, according to the pro-
tocol. Product accumulation was measured in real time 
and the mean cycle thresholds were determined. The 
expression levels of Ins1 and Ins2 were calculated using 
the  2ΔΔCT method of relative quantification and normal-
ized by the housekeeping gene glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH). The PCR primers are 
as follows: Ins1 (NM_008386): Fw (CCA GCT ATA ATC 
AGA GAC CA), Rev (GGG CCT TAG TTG CAG TAG TT), 
Ins2 (NM_001185083): Fw (AGC GTG GCT TCT TCT 
ACA CAC), Rev (CTG GTG CAG CAC TGA TCT ACA), 
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GAPDH (NM_001289726): Fw (TCC ACT CAC GGC 
AAA TTC AACG), Rev (TAG ACT CCA CGA CAT ACT 
CAGC).

Statistical analysis
All data are expressed as means ± SEM. The statistical sig-
nificance of differences was assessed using a paired t-test 
for electrophysiological changes in currents and one-way 
ANOVA followed by Tukey’s test for insulin secretion 
and qRT-PCR results. P < 0.05 was considered as signifi-
cant difference.

Results
Effect of pemafibrate and fenofibrate on insulin secretion 
from pancreatic beta‑cell line
First, we measured the insulin secretion from cultured 
pancreatic beta-cell line MIN6 cells in various condi-
tions. The 10  min application of fenofibrate in low glu-
cose conditions (2  mM glucose) significantly increased 
insulin secretion compared to the control and pemafi-
brate (Fig.  1a, left). Pemafibrate application for 10  min 
did not induce an increase in insulin secretion compared 
to the control. The amounts of insulin secreted were 
6.45 ± 0.14  ng/ml for the control, 8.56 ± 0.45  ng/ml for 
fenofibrate, and 6.08 ± 0.64 ng/ml for pemafibrate. In high 
glucose conditions (10  mM glucose), the 10  min appli-
cation of fenofibrate tended to increase insulin secre-
tion, but the increase was not statistically significant 
compared to the control or pemafibrate (Fig. 1A, right). 
The amounts of secreted insulin were 12.36 ± 0.86  ng/
ml for the control, 14.94 ± 1.14 ng/ml for fenofibrate, and 
13.23 ± 0.73 ng/ml for pemafibrate.

In long term applications, both fenofibrate and pemafi-
brate did not show significant differences in insulin secre-
tion compared to the control in low glucose conditions 
(11.84 ± 0.57  ng/ml for the control, 11.10 ± 0.41  ng/ml 
for fenofibrate, and 12.26 ± 0.79  ng/ml for pemafibrate) 
(Fig. 1b, left). However, in high glucose conditions, fenof-
ibrate showed a significant decrease in insulin secretion 
(16.77 ± 0.58  ng/ml for the control, 15.07 ± 0.43  ng/ml 
for fenofibrate, and 16.11 ± 0.32  ng/ml for pemafibrate) 
(Fig. 1b, right).

Effect of fenofibrate and pemafibrate on KATP channel 
activity
We recorded the  KATP channel current of MIN6 cells 
using the whole-cell patch-clamp technique. The applica-
tion of 20 mM glucose did not affect  KATP channel cur-
rents, indicating that the intracellular complex, such as 
the glycolysis system, is replaced by a pipette solution.

Consistent with the results of our previous study, the 
application of 100  µM fenofibrate reduced  KATP chan-
nels in MIN6 cells (Fig.  2A). The  KATP channel current 

before the application of fenofibrate (the control) was 
28.46 ± 5.11 pA/pF, while after the application of fenofi-
brate it was 10.27 ± 1.78 pA/pF. The application of 
100 µM pemafibrate showed no effect on the  KATP chan-
nel current (Fig. 2b). The  KATP channel current before the 
application of pemafibrate (the control) was 36.66 ± 10.46 
pA/pF, while after the application of pemafibrate it was 
30.94 ± 7.11 pA/pF. The current recorded in this study 
was confirmed to be the  KATP channel current by apply-
ing a selective blocker of the  KATP channel (100  µM 
tolbutamide).

Effect of fenofibrate and pemafibrate on insulin mRNA 
expression in MIN6 cells
Because fenofibrate showed a significant reduction of 
insulin secretion in long term application under high glu-
cose conditions, we measured the influence of these two 
drugs on insulin gene expression. No difference in Ins1 
or Ins2 mRNA expression was confirmed after 100 µM of 
fenofibrate or pemafibrate applications (Fig. 3a, b).

Discussion
In the present study, we showed that SPPARMα pemafi-
brate has no direct effect on insulin secretion, whereas 
the PPARα ligand fenofibrate blocks  KATP channels, 
increases short term insulin secretion in low glucose con-
ditions, and reduces long term insulin secretion in high 
glucose conditions.

PPARα ligands are reported to have glucose-lowering 
effects in type 2 diabetic patients and diabetic model mice 
[8, 19, 20]. The underlying mechanism for lowering glu-
cose is considered to be the ligands acting on both insu-
lin sensitivity and pancreatic beta-cells. Regarding the 
effect on insulin sensitivity, PPARα ligands are reported 
to increase TG and fatty acid metabolism, thus reducing 
the fatty acid contents in tissues such as those in the liver 
and skeletal muscle [21, 22]. In addition, suppression of 
inflammatory cytokine production from monocytes is 
also considered to be a mechanism of improving insulin 
sensitivity [23]. Regarding the effects of PPARα ligands on 
pancreatic beta-cells, fenofibrate is reported to potentiate 
glucose-stimulated insulin secretion (GSIS) under high 
palmitate conditions [8]. Pemafibrate is also reported to 
improve insulin secretion by increasing the expression 
of ATP-binding cassette protein A1 (ABCA1), which is a 
critical regulator of cholesterol and phospholipid efflux 
[9]. It is likely that PPARα ligands indirectly improve pan-
creatic beta-cell function by ameliorating lipotoxicity. 
However, reports are showing PPARα ligands stimulating 
insulin secretion by directly acting on beta-cell function. 
Pemafibrate is reported to ameliorate oxidative stress of 
pancreatic beta-cells [24]. Since the expression of anti-
oxidant enzymes are low in pancreatic beta-cells [25], the 
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effect of pemafibrate on reducing oxidative stress is more 
in the maintaining of beta-cell condition rather than the 
insulin secretion process. However, we have shown in the 
past that fenofibrate directly affects the insulin secretion 
process by closing  KATP channels.

The  KATP channels are a key factor in regulating insu-
lin secretion in pancreatic beta-cells. The ATP produced 
from glucose metabolism directly interacts with, and 

closes,  KATP channels, and induces insulin secretion. 
Reduction of ATP sensitivity in  KATP channels induces a 
reduction in insulin secretion. The reduction of ATP sen-
sitivity of  KATP channels due to mutation can cause a spe-
cial type of diabetes known as neonatal diabetes [26, 27].

In the present study, fenofibrate significantly 
increased insulin secretion in short term applications 
in low glucose conditions, and only tended to increase 
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under high glucose conditions. This may be explained 
in that the increase of intracellular ATP reflecting high 
glucose conditions may overcome the inhibitory effect 
of fenofibrate on  KATP channels. Further study of fenofi-
brate on  KATP channel kinetics is required to elucidate 

the details of the mechanism for fenofibrate blocking 
the channels.

To date, there are no reports of hypoglycemia from 
patients under fenofibrate treatment. This is because 
fenofibrate is rapidly converted into fenofibric acid, the 
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pharmacologically relevant form of PPARα, in liver and 
plasma [28]. However, we have shown in our previous 
study that fenofibric acid also closes  KATP channels and 
induces insulin secretion in high doses. In addition, 
PPARγ agonists, such as troglitazone and 14-deoxy 
∆12,14-PGJ2, have been confirmed to close  KATP chan-
nels and induce insulin secretion [14]. Therefore, with 
pemafibrate being a highly specific ligand of PPARα and 
fibrate class drug, it is important to confirm whether it 
affects  KATP channels and insulin secretion similar to 
fenofibrate or PPARγ ligands. The present study clearly 
shows that pemafibrate does not affect  KATP channel 
activity, insulin secretion, or insulin gene expression. 
Structurally, fenofibrate and pemafibrate have a com-
mon acidic region but pemafibate uniquely contains 
benzoxadole and phenoxyalkyl side chains (Fig.  4). 

These structural differences may contribute to different 
effects on insulin secretion and  KATP channel activity.

Although pemafibrate showed no effect on insu-
lin secretion, we have shown in this study that 60  min 
applications of fenofibrate can significantly reduce insu-
lin secretion compared to the control in high glucose 
conditions. In the past, Ramarkrishnan et  al. reported 
that mice treated with fenofibrate for 4  weeks showed 
a reduction in insulin secretion [29]. The underlying 
mechanism for this in vivo effect of a reduction of insu-
lin secretion induced by fenofibrate treatment was clari-
fied to be a mechanism compensating for the increased 
plasma insulin level due to the fenofibrate’s PPARα acti-
vation-triggered reduction of insulin clearance in the 
liver. In the same report, it was further confirmed that 
in vitro experiments using islets isolated from the same 
mice did not show an increase in insulin secretion. This 
is in direct contrast to the findings of the present study. 
Because insulin mRNA expression was not affected by 
the fenofibrate in our study, the underlying mechanism 
for our results may not involve the transcriptional activ-
ity of insulin genes. The fact that this effect was only 
observed in high glucose conditions may indicate the 
involvement of glucose metabolism. Further studies are 
required.

Conclusions
While fenofibrate can inhibit the  KATP channel and 
induce a significant increase of insulin secretion in 
low glucose concentration within 10  min, pemafibrate 
showed no such effect. It indicates that when these drugs 
are clinically used to treat dyslipidemia, fenofibrate may 
increase insulin secretion while pemafibrate has no such 
effect. In addition to the pharmacological actions we 
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have shown in this study, our current findings contain 
important information on possible additional effects and 
pharmacological mechanism of PPARα ligands. Clini-
cally, the findings of the present study that suggest the 
possible involvement of PPARα ligands in insulin secre-
tion provide new information for the treatment of diabe-
tes as well.

Abbreviations
KATP channel  ATP sensitive potassium channel
PPAR  Peroxisome proliferator-activated receptors selective
SPPARα  PPARα modulator
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