
Ohue BMC Research Notes (2023) 16:229
https://doi.org/10.1186/s13104-023-06505-w

RESEARCH NOTE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Research Notes

MEGADOCK-on-Colab: an easy-to-use
protein–protein docking tool on Google
Colaboratory
Masahito Ohue1*

Abstract

Motivation Since the advent of ColabFold, numerous software packages have been provided with Google Colabora-
tory-compatible ipynb files, allowing users to effortlessly test and reproduce results without the need for local installa-
tion or configuration. MEGADOCK, a protein–protein docking tool, is particularly well-suited for Google Colaboratory
due to its lightweight computations and GPU acceleration capabilities. To increase accessibility and promote wide-
spread use, it is crucial to provide a computing environment compatible with Google Colaboratory.

Results In this study, we report the development of a Google Colaboratory environment for running our protein–
protein docking software, MEGADOCK. We provide a comprehensive ipynb file, including the compilation of MEGA-
DOCK with the FFTW library installation on Colaboratory, the introduction of related tools using PyPI/apt, and the exe-
cution and visualization of docking structures. This streamlined environment enables users to visualize docking
structures with just one click. The code is available under a CC-BY NC 4.0 license from https:// github. com/ ohuel ab/
MEGAD OCK- on- Colab.

Keywords Protein–protein docking, Protein–protein interaction, MEGADOCK, Google Colaboratory

Introduction
Understanding protein–protein interactions is of para-
mount importance for elucidating complex biologi-
cal phenomena and identifying potential drug targets.
MEGADOCK [1, 2] is a protein docking software devel-
oped by our team to accurately predict protein–protein
interactions. Designed to function on Linux-based sys-
tems, MEGADOCK supports GPU computing via CUDA
and parallel computing on cluster machines. These capa-
bilities render it particularly suitable for conducting com-
prehensive prediction validations, including one-to-many

and many-to-many protein interactions [3]. In this paper,
we introduce MEGADOCK-on-Colab, a tool that facili-
tates the execution of MEGADOCK on Google Colabo-
ratory (hereinafter referred to as Colaboratory).

Colaboratory (https:// colab. resea rch. google. com) is
a Jupyter Notebook hosting service provided by Google
Research, enabling users to compose and execute Python
code directly within their web browsers. This versatile
service caters to a wide range of applications, including
machine learning, data analysis, and education, while
offering complimentary access to accelerators such as
GPUs. Each computing environment is provisioned as a
virtual machine (VM) with root privileges and is subse-
quently discarded after use, thereby permitting flexible
installation of libraries and external tools. The implemen-
tation of AlphaFold2 [4] and ColabFold [5] via Colabo-
ratory has enticed a growing number of life science
researchers to utilize the platform. Notably, since the

*Correspondence:
Masahito Ohue
ohue@c.titech.ac.jp
1 Department of Computer Science, School of Computing, Tokyo
Institute of Technology, 4259-G3-56 Nagatsutacho, Midori-ku, Yokohama,
Kanagawa 226-8501, Japan

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-023-06505-w&domain=pdf
https://github.com/ohuelab/MEGADOCK-on-Colab
https://github.com/ohuelab/MEGADOCK-on-Colab
https://colab.research.google.com

Page 2 of 4Ohue BMC Research Notes (2023) 16:229

emergence of ColabFold, an increasing array of software
packages have been accompanied by Colaboratory-com-
patible.ipynb files, enabling users to effortlessly test and
reproduce results without necessitating local installation
or configuration (e.g., small-molecule docking software
DiffDock [6]).

In this study, we have successfully established a Colab-
oratory environment for executing MEGADOCK. We
furnish a comprehensive ipynb file encompassing the
compilation of MEGADOCK, inclusive of the installation
of the FFTW library on Colaboratory, the incorporation
of pertinent tools via PyPI/apt, and the execution and vis-
ualization of docking structures within the Colaboratory
framework. This streamlined environment empowers
users to visualize docking structures with a single click.

Implementation
The following is a step-by-step explanation of the
MEGADOCK-on-Colab process flow and implementa-
tion method.

Preparation for input
In Colaboratory, user interfaces can be added to
Python variables using annotations such as #@
param{type:”string”}. For instance, by writing:
R_pdb_id = ”1CGI” #@param {type:”string”}
An input form for the variable R_pdb_id can be dis-

played with the pre-filled value of “1CGI”. Using this
approach, we have configured the tool to accept two PDB
IDs and chain names as input forms. Additionally, we
incorporated input forms to receive the main arguments
for MEGADOCK. The reason for preparing these inputs
prior to tool installation is to ensure that the input forms
are displayed as close to the top of the Jupyter Notebook
as possible, making users aware of their presence.

Installation of MEGADOCK on Colaboratory VM
Next, we install the GPU version of MEGADOCK on the
Colaboratory VM as follows. System commands can be
used in Colaboratory by adding a ‘!’ prefix.
!git clone https:// github. com/ akiya malab/ MEGAD

OCK
!git clone https:// github. com/ NVIDIA/ cuda- sampl

es
!apt install -y libfftw3-dev libfftw3-

single3
%cd ./MEGADOCK
!make -j 2 -f Makefile.colab
Since the operating system is based on Ubuntu, apt

can be used (to determine the actual OS being used,
run commands like !cat /etc/os-release). Note
that the NVIDIA drivers and CUDA are pre-installed

(to check the available GPU and CUDA version, execute
!nvidia-smi).

Downloading PDB files
We download the specified PDB files from the Protein
Data Bank using wget and use Biopython [7] to extract
the specified chains. Biopython is available on PyPI and
can be installed as follows:
!pip install biopython

Executing MEGADOCK
MEGADOCK can be executed with the following
command:
!./megadock-gpu -R $MDPDBR -L $MDPDBL

-t $MDt -N $MDN -o $MDOF
Please note that the arguments need to be passed from

Python to the shell environment variables. For instance,
we can set the values beforehand using something like:
os.environ[’MDPDBR’] = pdbr.

Visualizing predictions
NGLView [8] is a molecular viewer that operates within
Jupyter Notebook. It is available through PyPI and can be
installed with the following command:
!pip install nglview
To visualize the output.pdb file, use the following

code:
from google.colab import output
output.enable_custom_widget_manager()
import nglview as nv
view = nv.show_structure_file(”output.pdb”)
view

Results
Figures 1 and 2 showcase example screenshots of MEGA-
DOCK-on-Colab. Upon entering the requisite informa-
tion, such as files and parameters, into the initial input
form, users can automatically execute the entire series
of processes by selecting the “Run all” option. As of
April 2023, the free version of Colaboratory frequently
assigns an NVIDIA Tesla T4 GPU to its virtual environ-
ments. Utilizing the Tesla T4 GPU, the MEGADOCK
docking calculation for PDB 1CGI chain E (consisting
of 245 residues) and 1CGI chain I (consisting of 56 resi-
dues) required approximately 5 s. The processing time
for non-docking calculations, encompassing installa-
tion procedures, amounted to roughly 60 s. Additionally,
although we have demonstrated how to execute the pro-
gram using specified PDB IDs, it is also possible for users
to upload their own PDB files and perform the docking
calculations.

https://github.com/akiyamalab/MEGADOCK
https://github.com/akiyamalab/MEGADOCK
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples

Page 3 of 4Ohue BMC Research Notes (2023) 16:229

Discussion
In this study, we have delineated a method for construct-
ing an execution environment on Colaboratory, utilizing
MEGADOCK as a representative example.

Owing to its virtual nature, Colaboratory alleviates
concerns regarding potential damage to the environment
arising from installation failures, while consistently offer-
ing a nearly identical computing environment. However,

Fig. 1 MEGADOCK-on-Colab input form

Fig. 2 Visualization with NGLView in MEGADOCK-on-Colab

Page 4 of 4Ohue BMC Research Notes (2023) 16:229

it’s important to note that Colaboratory does not guar-
antee complete reproducibility. The libraries, OS version,
GPU, CPU, and other factors are determined by the cloud
and can vary, potentially affecting the results of compiled
code. Thus, while Colaboratory facilitates reproducibility
to some extent, it does not ensure it in all circumstances,
enhancing the convenience of software utilization.

As evidenced in the present study, Colaboratory sup-
ports not only Python-based programs but also the
compilation of diverse programming languages, execu-
tion of binary files, and implementation of system com-
mands, effectively operating as a GPU-equipped server.
In light of the ongoing development of an extensive array
of GPU-compatible libraries, including those for deep
learning, sharing reproducible execution environments
on Colaboratory is progressively becoming a standard
practice in software publication.

Limitations
While our study introduces significant advancements in
protein–protein docking software, there are certain limi-
tations that need to be acknowledged.

Firstly, the reproducibility aspect of Colaboratory is not
absolute. Although Colaboratory offers a nearly identical
computing environment, it does not guarantee complete
reproducibility. Factors such as the libraries, OS version,
GPU, and CPU are determined by the cloud and can
vary, potentially affecting the results of compiled code.
This inherent variability underscores the need for cau-
tion when interpreting results obtained solely from this
platform.

Secondly, our current implementation does not delve
deeply into the detailed analysis of protein–protein inter-
action surfaces. While we provide a general overview and
visualization, intricate details, especially those crucial for
understanding specific molecular interactions, are not
extensively covered. This might limit the depth of analysis
researchers can perform using our tool, especially when
a nuanced understanding of interaction sites is required.

Lastly, the visualization capabilities of our tool, while
robust, could benefit from the integration of more
advanced molecular viewers. Tools like mol* [9] offer
enhanced visualization features that can provide a more
comprehensive and detailed view of molecular interac-
tions. Incorporating such advanced viewers in future
updates could significantly elevate the user experience
and the depth of analysis possible.

In conclusion, while our tool offers a novel approach
and several advantages, users should be aware of these
limitations when utilizing it for their research. We aim to
address these in future iterations, ensuring a more com-
prehensive and user-friendly experience.

Author contributions
MO conducted the entire study, implementation, data preparation, and writ-
ing of the manuscript.

Funding
This work has been supported by the JST FOREST (JPMJFR216J) and JST ACT-X
(JPMJAX20A3).

Code availability
The code is available under a CC-BY NC 4.0 license from https:// github. com/
ohuel ab/ MEGAD OCK- on- Colab.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
There are no competing interests.

Received: 11 May 2023 Accepted: 6 September 2023

References
 1. Ohue M, Shimoda T, Suzuki S, et al. MEGADOCK 4.0: an ultra-high-perfor-

mance protein–protein docking software for heterogeneous supercom-
puters. Bioinformatics. 2014;30(22):3281–3.

 2. Ohue M, Matsuzaki Y, Uchikoga N, et al. MEGADOCK: an all-to-all pro-
tein–protein interaction prediction system using tertiary structure data.
Protein Pept Lett. 2014;21(8):766–78.

 3. Aoyama K, Watanabe H, Ohue M, Akiyama Y. Multiple HPC environments-
aware container image configuration workflow for large-scale all-to-all
protein–protein docking calculations. In: Proceedings of the SCFA2020,
LNCS. 2020; 12082:23–39.

 4. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure predic-
tion with AlphaFold. Nature. 2021;596(7873):583–9.

 5. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger
M. ColabFold: making protein folding accessible to all. Nat Methods.
2022;19(6):679–82.

 6. Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T. DiffDock: diffusion steps,
twists, and turns for molecular docking. In: Proceedings of the ICLR2023.
https:// openr eview. net/ forum? id= kKF8_K- mBbS.

 7. Cock PJ, Antao T, Chang JT, et al. Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics.
2009;25(11):1422–3.

 8. Nguyen H, Case DA, Rose AS. NGLview-interactive molecular graphics for
Jupyter notebooks. Bioinformatics. 2018;34(7):1241–2.

 9. Sehnal D, Bittrich S, Deshpande M, et al. Mol* Viewer: modern web app
for 3D visualization and analysis of large biomolecular structures. Nucleic
Acids Res. 2021;49(W1):W431–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/ohuelab/MEGADOCK-on-Colab
https://github.com/ohuelab/MEGADOCK-on-Colab
https://openreview.net/forum?id=kKF8_K-mBbS

	MEGADOCK-on-Colab: an easy-to-use protein–protein docking tool on Google Colaboratory
	Abstract
	Motivation
	Results

	Introduction
	Implementation
	Preparation for input
	Installation of MEGADOCK on Colaboratory VM
	Downloading PDB files
	Executing MEGADOCK
	Visualizing predictions

	Results
	Discussion
	Limitations
	References

