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Using some previous data, the measured ES (ESmeasured) 
apparently slowed in the elderly than in the young adults 
[1, 9–12]. Contrary findings were also presented in other 
studies [13–15]. Thus, it is controversial whether the 
individual ES slowed with aging. Different study settings 
(e.g., measured speeds), anthropometrics (height, obesity, 
or fitness level), or different calculation of the ESmeasured 
render it difficult to obtain a consensus. Of these, anthro-
pometrics, especially in leg length, should be reconsid-
ered because longer leg length proportionally exhibited 
faster ESmeasured [1]. Most of the previous studies have 
not normalized the ESmeasured by leg length (ESnormalized), 
although leg length in association with height was nor-
mally greater in the young adults than in the elderly 
adults [1, 9, 10, 12, 13]. Furthermore, daily exercise 
habituation can be a related factor. Previous studies have 
compared the ESmeasured between active (or non-active) 

Introduction
The energy cost of walking per unit distance (Cw; 
J·kg− 1·m− 1) presents as a U-shaped curve as a function of 
walking speed (s; m·s− 1) [1–3]. This indicates that every 
individual has a specific walking speed minimizing the 
Cw [1–13], referred to as economical speed (ES) [1–3]. 
A biological importance of the ES is that it is well asso-
ciated with the preferred walking speed [13] in healthy 
populations [3–13].
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Abstract
Objective  A U-shaped relationship between energy cost of walking (Cw) and walking speed indicates that there is a 
specific speed minimizing the Cw, called economical speed (ES). It is mostly slower in older adults than young adults; 
however, effects of leg length on the ES have been ignored. We investigated effects of aging and exercise habituation 
on the normalized ES by leg length (ESnormalized). We quantified time delay of stride length and step frequency in 
sedentary young (SY), active young (AY), and active elderly (AE) adults in response to sinusoidal gait speed change at 
30-s and 180-s periods with an amplitude of ± 0.56 m･s− 1.

Results  The ES was significantly slower in the following sequence: AE, SY, and AY, whereas ESnormalized was slower in 
the AE than in other young groups, with no difference between AY and SY. AE and SY showed greater step variabilities 
at the 180-s period, whereas AY showed relatively smaller step variabilities at both periods. Collectively, the ESnormalized 
slowed due to aging, not due to exercise habituation. When optimizing the appropriate SL-SF combination for 
sinusoidal speed changes, young and elderly adults may adopt different strategies. Exercise habituation may reduce 
step variabilities in young adults.
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young and elderly counterparts [1, 13, 15]. Conversely, 
there is paucity in literatures comparing the ESnormalized 
between sedentary and active young adults. As the physi-
cal activity level is increased, the ESmeasured is rendered 
faster in the elderly adults [14, 15]. Based on these previ-
ous findings, we hypothesized that the ESnormalized would 
be influenced by exercise habituation even in young 
adults. The primary objective of this study was to inves-
tigate the effects of aging and exercise habituation on the 
ESnormalized among active elderly (AE), active young (AY), 
and sedentary young (SY) adults.

When people walk at a given speed, continuous adjust-
ment of their limbs is required to refrain from falling. 
This adaptation potentially contributes to minimize the 
Cw [16, 17], implying that the ability to adjust lower limb 
motions may be associated with aging and exercise habit-
uation. Thus, sinusoidal speed changing protocol may 
be useful to manipulate the lower limb motions [18–21] 
as it requires the continuous adjustment of stride length 
(SL) and step frequency (SF). These continuous adjust-
ments play a crucial role in safely performing our daily 
activities. Recently, we demonstrated that SL, but not 
SF, showed a likely delay in response to sinusoidal speed 
changes even in young females walking in high-heeled 
shoes [21]. Furthermore, peak ankle torque decreased 
with aging [22]. Consequently, we further hypothesized 
that gait-adjusting strategies may differ among the three 
groups. Therefore, the secondary objective of this study 
was to quantify the diversity of step variabilities among 
these three groups.

Materials and methods
We used additional data from already published paper 
[19] based on an entirely different perspective. Seventeen 
SY, 16 AY, and 16 AE participated in this study (Table 1). 
Thirty-three healthy university students were classi-
fied between active and sedentary groups based on a 
recent guideline [23]. Elderly participants, aged over 65 
years, were active members of the “Walking & Climbing 

Association of Fukuoka City.” All participants were non-
smokers, with no history of medication use or orthopedic 
and cardiorespiratory diseases. This study was approved 
by the ethical committee at Kyusyu Sangyo University 
(no. 2019-0002) and was performed under consideration 
of the Declaration of Helsinki. All participants signed 
written informed consent after being informed the pur-
pose, experimental protocols, and possible risks.

The participants visited our laboratory twice. On their 
first visit, they underwent a familiarization session on a 
treadmill (TKK3080, Takei Scientific Instruments Co. 
Ltd., Niigata, Japan) at several speeds without grasping 
handrails of the treadmill during walking. Subsequently, 
we determined their individual preferred walking speed 
[13]. Following a 10–15 min seated rest period, they per-
formed the ESmeasured determination protocol at 6–7 dif-
ferent gait speeds. These speeds were incrementally set 
at 0.44-0.67-0.89-1.11-1.33-1.56  m·s− 1 (elderly women), 
-1.67  m·s− 1 (elderly men), -1.78  m·s− 1 (young women), 
and − 2.00 m·s− 1 (young men) [1]. Each speed was main-
tained for 4-min. Oxygen uptake (VO2) and carbon 
dioxide (VCO2) were continuously measured using a 
breath-by-breath technique (AE310-S, Minato Medi-
cal Science, Osaka, Japan). To calculate the Cw, an aver-
age VO2 and VCO2 for the final 2-min at each speed was 
used [24].

	Cw

(
J · kg−1 · m−1) =

4.186 × (3.869 × VO2 + 1.195 × VCO2)
s

A U-shaped relationship between Cw values and gait 
speeds was approximated with a quadratic Eqs. [1–3]:

	 Cw (s) = a · s2 + b · s + c

where the coefficients a, b, and c are determined by 
the least squares methods. The ESmeasured, at which 
the U-shaped Cw-s relationship becomes minimal, can 

Table 1  Physical characteristics in young and elderly participants
Sedentary young
(8M and 9F)

Active young
(11M and 5W)

Active elderly
(9M and 7F)

F values P 
values

Age, years 20.3 ± 0.9 19.9 ± 0.6 74.1 ± 4.6# 2185 < 0.001
Height, m 1.613 ± 0.083 1.679 ± 0.068* 1.598 ± 0.087 4.713 0.014
Body mass, kg 57.2 ± 9.8 61.3 ± 9.3 58.6 ± 7.5 0.892 0.417
BMI, kg･m− 2 21.9 ± 2.9 21.6 ± 2.2 22.9 ± 2.0 1.196 0.312
Leg length, m 0.862 ± 0.059 0.901 ± 0.042* 0.852 ± 0.059 3.908 0.027
Exercise habituation ･None except physical 

education classes at their 
university

･Recreational sports
(volleyball, soccer, tennis, track 
and field)
･90–120 min per day
･2–4 days per week

･Brisk walking
(community walking and 
mountain club)
･40–60 min per day
･5–7 days per week

Values are mean ± standard deviation. M, men; F, female; BMI, body mass index. * indicates significant vs. “Active elderly” and “Sedentary young”, and # indicates 
significant differences vs. “Sedentary and Active young” with Ryan’s post-hoc test
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be obtained when the Cw’ (s) is zero [1–3]. Thus, the 
ESmeasured was calculated by a following equation:

	
ESmeasured =

|−b|
2a

The ESnormalized was calculated on the “dynamic similar-
ity” theory [25], providing that geometrically similar 
legged locomotion will walk similarly at the same Froude 
number defined as:

	
Froude number =

(ESmeasured)2

g × leg length

where g is the gravitational acceleration (9.81  m·s− 2). 
Energetically optimal gait speed can be obtained when 
the Froude number is 0.25 [25]. Thus, the ESnormalized was 
calculated as follows:

	
ESnormalized =

0.3193 × ESmeasured√
leg length

One week later, biomechanical measurements were 
conducted on the second visit. To capture motion data, 
eight high-speed cameras (Kestrel300, MAC3D System, 
Rohnert Park, CA, USA) were set with a sampling rate 
of 100 Hz [20]. The participants walked at their preferred 
walking speed in young adults or 90% preferred walking 
speed in elderly adults for 30-s, thereafter, the treadmill 
speed was sinusoidally controlled at 30-s and 180-s peri-
ods with an amplitude of ± 0.56  m·s− 1 (± 2  km·h− 1) in a 
randomized order with 5-min interval. The motion data 
were used to determine the time delay (TD) of the SL and 
SF against sinusoidal speed change. The SL and SF were 
approximated using the following equation:

	 SL and/or SF = A · sin (ωt − TD)

where A, ω, and t represent amplitude, angular fre-
quency, and time (msec), respectively.

Values are mean ± standard deviation. One-way analy-
sis of variance (ANOVA) was used for comparisons in 
physical characteristics, ESmeasured, and ESnormalized among 
three groups, respectively. Two-way (3 groups × 2 sinu-
soidal periods) repeated measures ANOVA was used 
for comparisons of the TD of SL (TDSL) and SF (TDSF). 
When F values were significant, Ryan’s post-hoc test, 
which can be used regardless of data distribution [26], 
was used for further analyses. The statistical significance 
was set at p < 0.05.

Results
Height and leg length in the AY group were greater than 
the other groups with no differences in body weight and 
body mass index among the groups (Table 1).

The ESmeasured was fastest in the AY group 
(1.361 ± 0.058  m·s− 1), followed by the SY group 
(1.304 ± 0.068 m·s− 1) and AE group (1.250 ± 0.061 m·s− 1), 
with significant differences among the groups (F = 11.781, 
p < 0.001, Fig.  1A). The ESnormalized was significantly 
slower in the AE group (0.433 ± 0.021) compared to that 
in the SY group (0.448 ± 0.018; t = 2.303, p = 0.026) and AY 
group (0.458 ± 0.018; t = 3.658, p < 0.001), with no signifi-
cant difference between SY and AY (t = 1.410, p = 0.165) 
(Fig. 1B).

Fig. 1  Comparisons of measured (A) and normalized (B) economical 
speed (ES) between sedentary young (SY; white bars), active young (AY; 
gray bars), and active elderly (AE; black bars) adults, respectively. Values 
are mean ± standard deviation. *p < 0.05 between AE and SY and between 
AE and AY for both ESmeasured and ESnormalized. **p < 0.05 between SY and AY 
for ESmeasured.
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Fig. 2  Time delay of stride length (TDSL) and step frequency (TDSF) at 30-s and 180-s period among SY, AY, and AE groups. *significantly greater TDSF in 
the AE than in the AY and SY at the 180-s period. #significant difference in the TDSF between 30-s and 180-s within the same groups (within SY or AY, 
respectively). Two participants (AE = 1 and AY = 1) were excluded due to a data unavailability at the 180-s period
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There were no significant main effects of group 
(F = 1.657, p = 0.202), period (F = 0.058, p = 0.811), or 
interaction effects (F = 2.253, p = 0.117) in the TDSL 
(Fig.  2A). There was a significant interaction effect 
in the TDSF (F = 3.889, p = 0.028, Fig.  2B), along with 
main effects of group (F = 3.914, p = 0.037) and period 
(F = 11.926, p = 0.001) (Fig. 2B). A simple main effect of 
period showed that the TDSF in the SY and AY groups 
at the 30-s period were significantly lower than those 
at the 180-s period, respectively (F = 7.821, p = 0.001 in 
the SY and F = 11.819, p = 0.001 in the AY). A post-hoc 
test further revealed that the TDSF in the AE group at 
the 180-s period was significantly lesser than in the SY 
group (t = 3.094, p = 0.004) and AY (t = 3.497, p < 0.001) 
(Fig. 2B).

Discussion
On average, a relatively smaller difference was 
observed in the ESnormalized (~ 3.9%; Fig.  1B) than the 
ESmeasured (~ 6.2%; Fig.  1A) between AE and the other 
two groups, suggesting that leg length plays a key role 
in determining the individual ES. Additionally, no sig-
nificant difference was observed between SY and AY in 
the ESnormalized (Fig. 1B), indicating that exercise habit-
uation did not affect the ESnormalized, at least, in young 
adults. Thus, the first hypothesis was rejected. An 
age-related upward shift of the Cw-s curve is normally 
accompanied with a leftward shift of that curve, result-
ing in a slower ESmeasured [1, 9, 12]. It has been consid-
ered by a longer thigh muscle co-activation period in 
a gait cycle [9, 11, 27–29], which would be a trade-off 
between gait stability and energy expenditure during 
walking in the elderly adults. It was noteworthy not-
ing that the Cw-s curve and/or Cw at some selected gait 
speeds was lower in elderly distance runners than in 
elderly habitual walkers [13–15, 30]. Remarkably, com-
pared to healthy young adults, neither leftward nor 
upward shifts of the U-shaped curve were observed 
in elderly runners [14] and cyclists [15] compared to 
healthy young adults. These aerobic exercises can miti-
gate age-related upward and leftward shifts in the Cw-s 
curve [14, 15], thereby potentially avoiding a decline in 
the ES. Some considerations are still necessary because 
cycling is not a bipedal locomotion. Running exercise 
requires much faster optimization of the SL-SF com-
binations compared to walking. Notably, cycling also 
requires quick steering to maintain two-wheeled pos-
ture. Thus, such a postural adjustment ability during 
cycling may extend to gait stability because quick opti-
mization of the SL-SF combinations can reduce Cw [16, 
17]. Both previous studies and our current findings 
suggest that habitual exercise may be able to mitigate 
age-related deterioration of the individual ES.

Step width of the AE in our original study was not dif-
ferent from that of younger counterparts [20]. Instead, 
elderly adults normally present a shorter SL compared to 
the young adults [31]. In that case, a faster SF is necessary 
because gait speed should correspond to the product of 
the SL and SF. During sinusoidal speed changing condi-
tion, quick optimization of the SL and SF is continuously 
required to catch up with the speed change. In support of 
our second hypothesis, we observed that the variability of 
TDSL in the SY group (Fig. 2A) and TDSF in the AE group 
(Fig. 2B) was notably high at the 180-s period. Variabil-
ity in physiological responses during exercise, such as 
heart rate variability, typically reflects exercise tolerance 
[32]. Therefore, these greater variabilities may indicate a 
greater locomotive flexibility to optimize SL-SF combina-
tions in response to passive gait speed changes. However, 
excessive gait variability is associated with an increase in 
fall risks [33] and Cw [16, 17]. Thus, these greater vari-
abilities of TDSL in the SY group (Fig.  2A) and TDSF in 
the AE group (Fig.  2B) at the 180-s period suggest that 
strategies for optimizing appropriate SL-SF combinations 
against sinusoidal speed changes differ between SY and 
AE. That is, SY adopted by manipulating SF (in particular, 
by preceding the SF), whereas AE adopted by manipulat-
ing SL. In contrast, AY exhibited relatively smaller vari-
abilities in TDSL and TDSF at both periods (Fig.  2A and 
B), indicating that exercise habituation tends to reduce 
step variabilities in young adults.

Limitations
Technological limitations should be stated. Two com-
parative studies presented phase shift in degree [18, 19], 
equivalent to the TDSL and TDSF in the present study. 
Surprisingly, both TDSF and TDSL in healthy young adults 
showed negative values over 4-s in SF and 1.5-s in SL 
even at 60-s sinusoidal speed changing protocol [18, 19]. 
However, the trend of our results completely different 
from those of our previous studies (Fig. 2). This could be 
attributed to the different calculation techniques. Both 
previous studies used interpolated 1-s data for calculating 
the phase shift of the SF and SL. That is, TDSL and TDSF 
values with a sampling frequency of 1.0 Hz were treated 
based on the discrete Fourier transform. If SF and/or SL 
variabilities occurred above 0.5 Hz that corresponded to 
the Nyquist folding frequency of the original sampling 
frequency (1.0 Hz), those variabilities could contaminate 
low-frequency spectrums, so-called “aliasing” [34].

Abbreviations
AE	� active elderly
ANOVA	� analysis of variance
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Cw	� energy cost of walking
ESmeasured	� measured economical speed
ESnormalized	� normalized economical speed
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