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Introduction
Hypnosis can be an effective treatment for numerous 
disorders [1–3]. The hypnotic response may depend on 
factors such as hypnotisability, the hypnotic state, expec-
tations [4–6], motivation, the therapeutic relationship, 
etc. [7]. Hypnotisability is a personal trait that greatly 
affects treatment outcomes [8–13]. Nevertheless, hypno-
sis is currently defined as a state of consciousness [14], 
and this study is focused solely on the hypnotic state. 
Hypnotic “depth” has been a contentious issue, but it 
is still used in contemporary research to describe the 
hypnotic state quantitatively [5, 15–22], alongside the 
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Abstract
Objective Hypnosis can be an effective treatment for many conditions, and there have been attempts to develop 
instrumental approaches to continuously monitor hypnotic state level (“depth”). However, there is no method that 
addresses the individual variability of electrophysiological hypnotic correlates. We explore the possibility of using an 
EEG-based passive brain-computer interface (pBCI) for real-time, individualised estimation of the hypnosis deepening 
process.

Results The wakefulness and deep hypnosis intervals were manually defined and labelled in 27 
electroencephalographic (EEG) recordings obtained from eight outpatients after hypnosis sessions. Spectral analysis 
showed that EEG correlates of deep hypnosis were relatively stable in each patient throughout the treatment but 
varied between patients. Data from each first session was used to train classification models to continuously assess 
deep hypnosis probability in subsequent sessions. Models trained using four frequency bands (1.5–45, 1.5–8, 1.5–14, 
and 4–15 Hz) showed accuracy mostly exceeding 85% in a 10-fold cross-validation. Real-time classification accuracy 
was also acceptable, so at least one of the four bands yielded results exceeding 74% in any session. The best results 
averaged across all sessions were obtained using 1.5–14 and 4–15 Hz, with an accuracy of 82%. The revealed issues 
are also discussed.
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related concepts of “deep hypnosis” [6, 18, 19, 23–31] and 
“deepening” [16, 32–39]. Multiple studies indicate that 
sufficient depth is beneficial in some cases, e.g., in non-
pharmacological analgesia [24, 25, 40], general hypnotic 
anaesthesia [26, 30, 33], etc. Greater depth could result 
in subjects’ feeling more influenced by hypnotic proce-
dures, leading to better compliance [41, 42]. Depth self-
ratings can correlate with hypnotisability scores [19].

Probably, a hypnotic state gradually evolves during 
a session and tends to fluctuate [43]. The possible use-
fulness of a more accurate estimation of subtle depth 
alterations, unable to be seen visually, led researchers to 
the idea of a “hypnometer” [40], a device for real-time 
hypnotic depth measures to help a practitioner decide 
whether to continue with deepening or to begin thera-
peutic suggestions. Heart rate variability (HRV) [40] and 
an EEG-based parameter, the bispectral index (BIS), were 
considered the bases for such measures. BIS is a prom-
ising method [36, 44]; however, its calculation algorithm 
is designed primarily for pharmacological anaesthesia 
rather than hypnotherapy. Moreover, although hypno-
sis is characterised by some common EEG correlates 
[18, 31, 36, 44–57], differences between subjects are also 
observed. Perhaps an approach that addresses individual 
variability could have benefits.

Passive brain-computer interfaces (pBCI) are used to 
assess mental states such as fatigue, concentration, etc. 
[58, 59]. We hypothesise that machine learning might be 
used to recognise and continuously quantify EEG corre-
lates of hypnosis specific to a person. We aim to explore 
this possibility by designing a prototype system using an 
EEG-based pBCI to real-time monitor hypnosis deepen-
ing and conducting its initial feasibility test.

Materials and methods
Participants
Nine outpatients (six women, mean age: 38.33 ± 10.61 
years) underwent up to seven hypnosis sessions. Inclu-
sion criteria: age 18–65 years; consent for participation. 
Patients had previously reported experiencing deep 
hypnosis, described as a lack of self-awareness, external 
awareness, and memories for the deepest period of a ses-
sion. Thus, probably all included participants could be 
classified as “dissociators” [60–62], “amnesia-prone” [63], 
or “dissociative” subtype individuals [64]. This is com-
mon, yet not the only type to experience hypnosis [4, 5, 
15, 65]. Assumed neural correlates of such phenomena 
were shown in several studies [29, 66]. Exclusion crite-
ria: cognitive decline, epilepsy, psychosis, and no episode 
of feeling deeply hypnotised during the first session. See 
“Supplements A(1)” for the participants’ summary.

Hardware and software equipment
The BCI system included equipment for synchronised 
EEG and video recording and also software: WinEEG 
2.130.101 [67], EEGLab 2019.0 [68], and OpenVibe 2.2.0 
[69]. See “Supplements A(2)” for details.

A brief description of a hypnotic session
In each patient, after installing the electrodes and equip-
ment for EEG and video recording, a baseline EEG was 
recorded for 3–5  min with eyes closed. Hypnosis was 
then induced and deepened by the counting method. 
After therapeutic suggestions, a patient was awakened. 
Feedback was then collected.

The principle of the proposed approach
We used the passive type of BCI [58, 59, 70] and super-
vised learning [71, 72]. A recording from the first session 
with each patient was used as a calibration file to train a 
classifier. We first manually identified and then labelled 
the EEG intervals corresponding to two opposite states 
of an implied neurophysiological continuum: wakeful-
ness (which matched the baseline registration periods) 
and the deepest states. The timing of the deepest states 
was identified with two criteria that had to be present 
simultaneously:

a) The physical signs recommended to verify sufficient 
depth [23, 24, 26]: substantial changes in breathing, 
relaxation of facial muscles, etc.

b) The patients’ post-session feedback on the 
hypnotherapist’s counting range during which they 
felt most deeply hypnotised (see “Supplements A(3)” 
for this procedure’s details).

The file with two sets of labels was then used to train a 
classifier to continuously recognise (“predict”) these two 
opposite states in subsequent sessions with interdepen-
dent probability. Assuming that deepening is a continu-
ous transition from wakefulness to the deepest hypnotic 
state, we hypothesise that the continual real-time mea-
surement of the probability of a deep hypnosis during 
a session could tentatively, to some extent, operate as a 
quantitative reflection of the deepening process.

Analysis and processing of obtained recordings
The collected data were processed in four ways.

a) Using WinEEG to compare the averaged power 
spectra of the identified deep hypnosis and the 
waking periods (5–10 min each) in each EEG, we 
obtained an overview of each patient’s assumed 
deep hypnosis patterns (which rhythms at which 
locations tend to alter while deeply hypnotised). 
We also assessed their putative stability throughout 
the treatment, qualitatively comparing them 
over different patient sessions. This analysis was 
conducted in parallel with all the others.
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b) During supervised learning, we trained prediction 
models, and those derived from the first sessions 
were then used in the following sessions for real-
time classification. The Common Spatial Pattern 
(CSP) [73–76] method was employed for signal 
spatial filtering, and Linear Discriminant Analysis 
(LDA) was a classification method. We tested four 
frequency bands: 1.5–45 Hz; 1.5–8 Hz; 1.5–14 Hz; 
and 4–15 Hz, to determine which could yield the 
models with the most classification accuracy, as 
assessed by the 10-fold cross-validation test. To 
get the cross-validation results for all sessions, the 
training procedure should be performed in each 
session as we did in the first (calibration) one. Thus, 
each second and subsequent session produced the 
“auxiliary” models. See “Supplements A(3)” for 
details.

c) Using models derived from the first sessions for real-
time state predictions in subsequent sessions yielded 
a Probability Value parameter, varying between 0 and 
1, displayed as a moving curve, which informed the 
hypnotherapist of the probability of a deep hypnotic 
state occurring. We called this curve the Predictive 
curve. “Supplements A(4)” describe details.

d) Each second and subsequent session was labelled by 
a specialist not privy to their predictive outcomes, 
and a percentage of correctly predicted states for 
different epochs was calculated to additionally test 
the accuracy [77]. The above-mentioned “auxiliary” 
models from these sessions were applied to classify 
the same data on which these models had been 
trained to plot a curve that reflected depth dynamics 
in a session most accurately—the Native curve. The 
Native and Predictive curves of the same sessions 
were then visually compared. For details, see 
“Supplements A(5)”.

Results and their discussion
Patient T reported no periods of deep hypnosis in the 
first session and was excluded from the analysis. Due to 
the artefacts, the recording from session #5 of Patient E 
was also excluded. Thus, the total number of EEGs from 
the remaining eight participants was 27.

Results of the qualitative assessment of the estimated 
patterns of deep hypnosis in patients and their stability 
throughout the treatment
Figure  1 demonstrates examples of topographic maps 
representing these results for three patients.

As seen, the electrophysiological changes tend to be 
generally similar in different sessions of a particular 
patient, which suggests that a classifier would correctly 
recognise the target patterns in the following sessions. 
Correlates common to the patients are seen, e.g., a 

slow-wave activity increase, which is consistent with the 
literature [18, 31, 45–57]. Several differences between 
individuals are also shown; therefore, an individualised 
approach to quantifying hypnosis appeared to be pref-
erable. These points suggest that machine learning may 
potentially apply to hypnosis. However, the qualitative 
analysis is approximate, and further statistical assessment 
may be useful.

“Supplements B” contain all the maps for all 27 sessions 
for all patients and the details on electrophysiological 
changes revealed.

Results of the 10-fold cross-validation test of classification 
accuracy
Table 1(A) shows that the accuracy exceeded 85% in the 
majority of cases. Results of 100% were possibly due to 
the optimistic calculation outcomes of the software [78] 
or the over-fitting phenomenon [79], which are undesir-
able and should be addressed further.

Results of real-time visual testing of the method (in the 
second and subsequent sessions)
As an example of such results, Fig. 2(A) shows Patient A’s 
Predictive curve from his seventh session.

“Supplements C” contain the Predictive curves for 
each patient. In general, post-session patients’ reports 
revealed an approximate match between the time when a 
curve was consistently above 0.7 (approximately, depend-
ing on smoothing settings) and a period of unawareness. 
The high-amplitude wave-like motion was associated 
with alternating awareness, fractional memories, etc. 
Thus, this could potentially confirm instrumentally the 
literature reports of hypnotic depth variations during a 
session [43]. “Supplements C” contain a detailed analyti-
cal description using the individual case.

Results of the classification accuracy evaluation based on 
the data from the second and subsequent sessions
Table  1(B) shows these results. As seen, the accuracy 
was high in many cases. Some poor results were due to 
either myographic artefacts or drift [80]. For a detailed 
analysis of the case-related findings, see “Supplements 
D”. In each session, at least one band yielded an accu-
racy exceeding 74%. Also, as seen, each patient had their 
“preferred” band for which the model was most accurate, 
e.g., for Patient A, it was 1.5–14 Hz; for Patients G and S, 
1.5–8  Hz, etc., which might correspond with the litera-
ture observing variation in findings on electrophysiologi-
cal correlates of hypnosis [31].

The accuracy averaged across all these sessions was 
highest when using bands 1.5–14 and 4–15  Hz. This is 
also in line with studies that reported the most changes 
in alpha and theta activity [18, 31, 36, 51, 54, 55].
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Results of a visual comparison of the Predictive and Native 
curves
Figure 2(B) shows the Native curve of Patient A’s seventh 
session. The configurations of curves (A) and (B) largely 
coincide, giving us additional confirmation that the 
model can reflect the real picture relatively accurately. 
“Supplements C” contain the pairs of the Predictive and 
Native curves for each patient for the second and follow-
ing sessions.

This study extends the idea of a “hypnometer” [40] but 
focuses on direct monitoring of brain activity rather than 
peripheral measurements. BIS for this purpose is prom-
ising [36, 44]; however, we suggest that a new approach, 
which addresses individual correlates of neural activity, 
may have benefits. It could be used to optimise therapy 
by controlling depth more precisely when sufficient 
depth can be helpful [24–26, 30, 32, 33, 40–43, 81].

Fig. 1 Comparison of power spectra between periods of deep hypnosis and wakefulness
This is an example of topographic maps displaying the differences in the averaged power spectra between deep hypnosis and the waking periods of 
EEG (“deep hypnosis” minus “wakefulness”) for three patients. Sessions for display are arbitrarily selected. Thus, the maps demonstrate the alterations in 
the power of different rhythms for different localizations while achieving deep hypnosis. Power changes are displayed in colour according to the gradu-
ation of a nearby colour scale (in uV²). The bands used are: Delta (1.5-4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Sensory-motor or Low beta (12–15 Hz), Beta1 
(15–18 Hz), Beta2 (18–25 Hz) and Gamma (25–45 Hz)
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Patient Session Accuracy for the corresponding band, %
1.5–45 Hz 1.5-8 Hz 1.5–14 Hz 4–15 Hz

(A) The 10-fold cross-validation test results, M ± SD

A 1 96 ± 8 86 ± 18 98 ± 6 94 ± 9.17

2 93.5 ± 10.01 95.5 ± 9.07 86.5 ± 14.33 72.5 ± 26.48

3 88 ± 18.33 72 ± 31.24 86 ± 25.38 86 ± 25.38

4 95 ± 15 83 ± 15.84 95 ± 10 95 ± 10

5 94 ± 9.17 89.67 ± 17.16 92.33 ± 13 96.33 ± 7.37

6 98 ± 6 87 ± 15.52 92 ± 13.27 96 ± 8

7 84.17 ± 21.87 93.33 ± 13.33 83.33 ± 22.36 86.67 ± 16.33

M ± SD 92.67 ± 4.86 86.64 ± 7.75 90.45 ± 5.32 89.5 ± 8.65

E 1 97.5 ± 7.5 82 ± 15.68 88.5 ± 16.13 95 ± 10

2 100 ± 0 90.5 ± 11.72 93 ± 15.52 86.5 ± 19.11

3 100 ± 0 91 ± 11.14 100 ± 0 100 ± 0

4 95 ± 10 93 ± 15.52 91 ± 15.78 92 ± 24

6* 100 ± 0 96 ± 8 94 ± 18 96 ± 8

M ± SD 98.5 ± 2.24 90.5 ± 5.22 93.3 ± 4.3 93.9 ± 5.03

G 1 94.33 ± 8.7 96 ± 8 98.33 ± 5 96 ± 12

2 98.33 ± 5 92.33 ± 18.14 94.67 ± 11.08 93 ± 15.52

3 100 ± 0 100 ± 0 100 ± 0 96.33 ± 7.37

4 98 ± 6 98 ± 6 98 ± 6 98 ± 6

M ± SD 97.67 ± 2.39 96.58 ± 3.27 97.75 ± 2.23 95.83 ± 2.08

S 1 100 ± 0 100 ± 0 97.5 ± 7.5 95.5 ± 9.07

2 97.5 ± 7.5 100 ± 0 100 ± 0 100 ± 0

3 97.5 ± 7.5 97.5 ± 7.5 97.5 ± 7.5 97.5 ± 7.5

M ± SD 98.33 ± 1.44 99.17 ± 1.44 98.33 ± 1.44 97.67 ± 2.25

O 1 100 ± 0 100 ± 0 97.5 ± 7.5 97.5 ± 7.5

2 100 ± 0 100 ± 0 97.5 ± 7.5 87.5 ± 16.78

M ± SD 100 ± 0 100 ± 0 97.5 ± 0 92.5 ± 7.07

N 1 96 ± 8 98 ± 6 94 ± 18 98 ± 6

2 100 ± 0 100 ± 0 100 ± 0 100 ± 0

M ± SD 98 ± 2.83 99 ± 1.41 97 ± 4.24 99 ± 1.41

V 1 91 ± 15.78 93.5 ± 10.01 98 ± 6 95.5 ± 9.07

2 100 ± 0 98 ± 6 100 ± 0 100 ± 0

M ± SD 95.5 ± 6.36 95.75 ± 3.18 99 ± 1.41 97.75 ± 3.18

C 1 100 ± 0 95 ± 15 81.67 ± 22.91 96.67 ± 10

2 100 ± 0 77.5 ± 29.36 93.33 ± 20 93.33 ± 20

M ± SD 100 ± 0 86.25 ± 12.37 87.5 ± 8.24 95 ± 2.36

(B) Results based on the data from the second (and subsequent) sessions

A 2 74.31 52.08 74.65 66.32

3 80.0 75.34 91.51 89.86

4 99.48 64.83 87.66 88.98

5 69.09 66.94 94.62 91.94

6 90.85 69.82 90.24 87.8

7 79.73 66.32 80.76 73.54

M ± SD 82.24 ± 11.12 65.89 ± 7.72 86.57 ± 7.48 83.07 ± 10.52

E 2 54.75 (98.42**) 38.29 70.89 80.38

3 54.18 (72.76***) 65.63 53.56 83.9

4 71.82 69.7 81.52 84.55

6* 70.06 44.19 59.01 84.01

M ± SD 62.7 ± 9.54 54.45 ± 15.53 66.24 ± 12.49 83.21 ± 1.9

Table 1 Deep hypnosis and wakefulness classification accuracy according to the band used to train the models
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The designed system is a trial version only and requires 
further substantial improvements, using both the results 
and issues we revealed. However, we suppose it could ini-
tially demonstrate that pBCI applies to hypnosis.

Limitations
  • Small sample size, the heterogeneous number of 

sessions, and the artefacts in some recordings.
  • Involvement only of those patients who described 

their deepest experiences as a lack of awareness 
and self-awareness. Although these phenomena 
are common for hypnotic experiences [4, 5, 15, 29, 
65, 66], they are probably only characteristics of 
“dissociators” [60–62] or “amnesia-prone” individuals 
[63]. Perhaps the “fantasizers” [60–62] or “fantasy-
prone” individuals [63] occurred outside of our 
focus, and further research should include this 
group.

  • We did not measure the participants’ hypnotisability. 
Trait effects are considered to have a different basis 
[4–7, 9], and the research of the interaction of state 
and trait is a serious task that we believe deserves a 
separate investigation.

  • A single rater was used to label each given recording.
  • Using the measurement of the continuously changing 

deep hypnosis probability as a tentative reflection 
of the deepening process is a hypothetical idea in 
the early stages of testing. The qualitative analysis 
conducted could partly underpin the information 
from a Predictive curve, but it is not comprehensive. 
Further studies, utilising the classification of 
intermediate levels of hypnosis, are needed.

  • The qualitative analysis of estimated hypnotic 
patterns is approximate, and further studies can 
incorporate statistical assessment to strengthen these 
findings as well as quantify differences in accuracies 
across subjects and bands and identify similarities 
between the Native and Predictive curves.

  • Our system is a prototype only, and the signal 
processing techniques used are not comprehensive, 
being the initial option. Further research is necessary 
to test other feature extraction approaches and 
classification methods [74, 82].

Patient Session Accuracy for the corresponding band, %
1.5–45 Hz 1.5-8 Hz 1.5–14 Hz 4–15 Hz

G 2 87.10 91.13 91.13 73.92

3 88.98 97.31 90.05 81.72

4 75.78 94.3 89.46 87.75

M ± SD 83.95 ± 7.14 94.25 ± 3.09 90.21 ± 0.85 81.13 ± 6.93

S 2 53.03 93.64 95.76 53.64

3 94.3 87.03 78.16 75.95

M ± SD 73.67 ± 29.18 90.34 ± 4.67 86.96 ± 12.45 64.8 ± 15.78

O 2 61.46 89.58 89.24 88.89

N 2 97.09 93.6 96.8 96.51

V 2 95.06 90.41 88.08 94.48

C 2 71.92 61.15 66.15 82.31

The average for all sessions, M ± SD 77.32 ± 14.89 74.28 ± 17.96 82.59 ± 12.53 82.44 ± 10.35
(A) The results of the 10-fold cross-validation test are shown as the average classification accuracy among the ten partitions of the marked file and the corresponding 
standard deviation

(B) This accuracy is calculated based on the data from the second and subsequent sessions as a percentage of coincidence between the states predicted by the 
model for different EEG epochs and the actual states related to these epochs

* Session 5 has been excluded from the analysis

**Value after a drift correction with a subtraction of 1.5 from the original feature vector (for details, see “Supplements D”)

*** Value after a drift correction with a subtraction of 2.5 from the original feature vector (for details, see “Supplements D”)

Table 1 (continued) 
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List of abbreviations
EEG  Electroencephalography
BCI  Brain-computer Interface
pBCI  Passive Brain-computer Interface
HRV  Heart Rate Variability
BIS  Bispectral Index
CSP  Common Spatial Pattern
LDA  Linear Discriminant Analysis
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using the 1.5–14 Hz range. The curve was smoothed by the Moving epoch average (Immediate) function. The number of 4-s epochs with an overlap of 
0.5 s used for averaging was 50. This curve was obtained by feeding the real-time patient’s EEG during the seventh session to the model trained on data 
from the first session and represents the changing probability of a deep hypnotic state over the session. “Supplements C” contain a detailed case-related 
analysis of how it could potentially describe session dynamics. (B) The Native curve of the seventh session with Patient A. The band and the smooth-
ing features are the same as in the Predictive curve. This curve was obtained after this (seventh) session by training a model (auxiliary) on data from the 
same session and then feeding this EEG recording to this model. Thus, this curve, which could only be constructed after the session was over, reflects the 
changes in the probability of deep hypnosis with very high accuracy
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