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Abstract 

Objective In this paper, we develop a new root-finding algorithm to solve the given non-linear equations. The 
proposed root-finding algorithm is based on the exponential method. This algorithm is derivative-free and converges 
fast.

Results Several numerical examples are presented to illustrate and validation of the proposed methods. Microsoft 
Excel and Maple implementation of the proposed algorithm is presented with sample computations.
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algorithms
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Introduction
Finding an approximate root of non-linear equations 
using iterative algorithms plays a significant role in the 
computational and applied mathematics. The applica-
tions of non-linear equations of the type f (x) = 0 arise 
in various branches of scientific computing fields. Solving 
such non-linear equations is one of the most important 
problems and frequently appearing in different scientific 
fields that can be modeled through nonlinear equations. 
In recent time, several researchers, engineers and scien-
tists focused on solving non-linear equations numerically 

as well as analytically. Iterative algorithms play a vital role 
in finding the solution of such non-linear problems. In 
general, the roots of non-linear or transcendental equa-
tions cannot be expressed in closed form or cannot be 
computed analytically. The root-finding algorithms pro-
vide us to compute approximations to the roots; these 
approximations are expressed either as small isolating 
intervals or as floating point numbers. There are various 
numerical algorithm/methods available in the literature, 
see for example [1–20], for more details.

Many new modified/hybrid/multi-step iterative algo-
rithms are developed in the last few years, by employ-
ing various mathematical algorithms/techniques. Noor 
et  al. discussed the fifth-order second derivative-free 
algorithm in 2007, see [21], by using the finite differ-
ence scheme. Grau-Sanchez et al. presented a fifth-order 
Chebyshev-Halley type method in 2008, see [22]. Zhan-
lav et  al. proposed a three- step fifth-order iterative 
algorithm in 2010 [23]. Nazeer et al. introduced a novel 
second derivative-free Householder’s method having 
fifth-order convergence by using finite-difference scheme 
[24] in 2016. Recently, in 2021, Amir et al. developed an 

*Correspondence:
P. Shanmugasundaram
psserode@mtu.edu.et
1 Department of Mathematics, Amrita School of Physical Sciences, Amrita 
Vishwa Vidyapeetham, Amaravati, Andhra Pradesh 522503, India
2 Mechanical Power Engineering Department, Faculty of Engineering, 
Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematics, College of Natural & Computational 
Sciences, Mizan-Tepi University, Mizan Teferi, Ethiopia
4 Department of Mathematics, National Institute of Technology, Chaltlang, 
796012 Aizawl, Mizoram, India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-023-06554-1&domain=pdf


Page 2 of 7Thota et al. BMC Research Notes          (2023) 16:276 

efficient and derivative-free algorithm for determining an 
approximate solution of the given non-linear scalar equa-
tions by applying forward- and finite-difference schemes 
similar to Traub’s method, see [25]. In this paper, we pro-
pose a new root- finding algorithm, which is derivative-
free, using exponential method. To propose the algorithm 
with derivative-free, we employ the forward difference 
scheme and finite difference scheme. This gives computa-
tionally low cost. Microsoft Excel and Maple implemen-
tations of the proposed algorithm are presented. Maple 
and Excel implementations with sample computations 
for differential and transcendental equations are available 
in the literature, see for example [18, 19, 26, 27] and there 
are various techniques for different type of applications, 
see [20, 28–35], the references cited therein.

Preliminaries
In this paper, we consider the non-linear equation of the 
type

Iterations techniques are a common approach widely 
used in various numerical algorithms/methods. It is a 
hope that an iteration in the general form of xn+1 = g(xn) 
will eventually converge to the true solution α of the 
problem (1) at the limit when n → ∞. The concern is 
whether this iteration will converge, and, if so, the rate of 
convergence. Specifically we use the following expression 
to represent how quickly the error en = α − xn converges 
to zero. Let en = α − xn and en+1 = α − xn+1 for n ≥ 0 be the 
errors at n-th and (n + 1)-th iterations respectively. If two 
positive constants µ and p exist, and

then the sequence is said to converge to α. Here p ≥ 1 is 
called the order of convergence; the constant µ is the rate 
of convergence or asymptotic error constant. This expres-
sion may be better understood when it is interpreted as 
|en+1|= µ|en|p when n → ∞. Obviously, the larger p and 
the smaller µ, the more quickly the sequence converges.

Theorem  1  [16, 36] Suppose that g ∈ Cp[a, b]. If 
g(k)(x) = 0, for k = 0, 1, 2,..., p − 1 and g (p)(x)  = 0, then the 
sequence {xn} is of order p.

This paper focuses on developing iterative algorithm 
having fourth-order of convergence. The following sec-
tion presents the proposed algorithm using Newton–
Raphson method and exponential method without 
computing the derivative.

(1)f (x) = 0.

(2)lim
n→∞

|en+1|

|en|p
=

|α − xn+1|

|α − xn|p
= µ,

Main text (a new iterative algorithm)
We assume that α is an exact root of the Eq. (1) and let a 
be an initial approximation (sufficiently close) to α. In the 
exponential method, we can find first approximation root 
using the following formula. See [5] for more details.

If xn+1 is the required root, then the exponential for-
mula can be expressed as, for n = 0, 1, 2, 3,...,

which has more than second-order convergence.
Suppose yn = xn+1, where xn+1 is the Newton–Raphson 

formula, is predictor and corrector, then Traub [37] cre-
ated a new two-step iterative algorithm as follows, n = 0, 
1, 2, 3,...,

It is shown in [37] that the Traub’s method has fourth-
order convergence. Since Newton–Raphson formula 
repeated twice, the Traub’s method includes four com-
putations to execute the algorithm. Amir et al. extended 
the Traub’s method to derivative-free algorithm by apply-
ing forward- and finite-difference schemes on Traub’s 
method.

In this paper, we propose a new two-step iterative algo-
rithm similar to that of Amir et  al., and the proposed 
algorithm has more than fourth-order convergence. 
The proposed method is created using the exponential 
method designed by Thota et  al. [5]. Using exponential 
method, one can obtain an approximate root of a given 
non-linear equation using the formula (3). The order of 
convergence of the exponentiation method is more than 
two, see [5] for more details. Using exponential method 
(3), the proposed algorithm consists of the following 
steps:

One can observe that, this is a two-step iteration 
method to calculate roots of a given non-linear equa-
tions. Since there are two steps in the algorithm and it 
required four evaluations for its execution. The biggest 
disadvantage of the algorithm (4) is computational cost 
of each iteration which is more. In order to reduce the 
high computational cost, we replace the first derivative 

x = a exp

(

−f (a)

af ′(a)

)

.

(3)xn+1 = xn exp

(

−f (xn)

xnf ′(xn)

)

.

xn+1 = yn −
f (yn)

f ′(yn)
.

(4)
yn = xn exp

(

−f (xn)

xnf ′(xn)

)

,

xn+1 = yn exp

(

−f (yn)

ynf ′(yn)

)

.
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by approximation and this suggests a novel derivative-
free algorithm. Hence, it can be applied easily to the 
given non- linear equations where the first derivative is 
not defined in the domain. We use the forward difference 
approximation in the predictor to approximate the first 
derivative as follows, here f (xn) ≥ 0,

Now, we use finite difference approximation in the cor-
rector step (i.e., in step 2) as follows

Substituting the Eqs. (5)–(6) in algorithm (4), we obtain 
a new efficient and derivative-free iterative algorithm to 
calculate the approximate solution of a given non-linear 
equation as follows

where g(xn) and h(xn, yn) are as given (5)–(6). This is a 
new iterative algorithm to find a root of transcendental 
equations in two-step without involvement of any deriva-
tive. One of the advantages of the proposed algorithm is 
existence of root where the first derivative does not exist 
at some particular points in the domain, and another big 
advance is the computational complexity. This method 
has more than fourth order convergence and its conver-
gence analysis is presented in the following section.

Analysis of convergence
In this section, we show in the following theorem that 
the order of converges of the proposed algorithm is five. 
Let I ⊂ R be an open interval. To prove this, we follow the 
proofs of ([2], Theorem  5, Theorem  6) or ([16], Theo-
rem 2, Theorem 3, Theorem 4).

Theorem 2 Let f: I → R. Suppose α ∈ I is a simple root of 
(1) and θ is a sufficiently small neighborhood of α. Then 
the iterative formula (7) produces a sequence of iterations 
{xn: n = 1, 2,...} with order of convergence four.

Proof Let.

where

(5)f ′(xn) =
f (xn + f (xn))− f (xn)

f (xn)
= g(xn).

(6)f ′(yn) =
f (yn)− f (xn)

yn − xn
= h(xn, yn).

(7)
yn = xn exp

(

−f (xn)

xng(xn)

)

,

xn+1 = yn exp

(

−f (yn)

ynh(xn, yn)

)

,

y = x exp

(

−f (x)

xg

)

, andR(x) = y exp

(

−f (y)

yh

)

,

Since α is a root of f (x), hence f (α) = 0. One can compute 
that

Hence the Algorithm (7) has fourth-order convergence, 
by Theorem 1. �

One can also verify that the order of convergence of 
the proposed algorithm as in the following example.

Example 1 Consider the following equation.

It has a root α =  − 1. We show, as discussed in proof of 
Theorem 2, that the proposed algorithm has fourth-order 
convergence. Following Theorem 2, we have

where

Now

Hence, by Theorem  2, the algorithm in (7) has fourth-
order convergence.

g =
f (x + f (x))− f (x)

f (x)
, h =

f (y)− f (x)

y− x
.

R(α) = α,

R′(α) = 0,

R′′(α) = 0,

R′′′(α) = 0,

Riv(α) �= 0.

(8)f (x) = x2 − 1.

g =
f (x + f (x))− f (x)

f (x)
= x2 − 2x − 1,

y = x exp

(

−f (x)

xg

)

= xe
(x−1)(x+1)

x(x2−2x−1) ,

h =
f (y)− f (x)

y− x
= x

(

e
−

(x−1)(x+1)

x(x2−2x−1) + 1

)

,

R(x) = y exp

(

−f (y)

yh

)

= xe
−x4et−3x3et+x2e−t+x2et−x3+2xe−t+xet−e−t+x

x2(x2−2x−1)(et+1) ,

t = −
(x − 1)(x + 1)

x(x2 − 2x − 1)
.

R(α) = −1 = α,

R′(α) = 0,

R′′(α) = 0,

R′′′(α) = 0,

R(iv)(α) = 8 �= 0.
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Numerical examples

Example 2 Consider a transcendental equation  
ex + cos(x)− 1 = 0 with x_0 = −2 . Now we can com-
pute a real of the given equation using the proposed algo-
rithm (7) as follows.

 Suppose f (x) = ex + cos(x)− 1, then we have 
g(x0) =

f (x0+f (x0))−f (x0)
f (x0)

= 0.5246013002, 

y0 = x0 exp
(

−f (x0)
x0g(x0)

)

= −0.5900190724, 

h(x0, y0) =
f (y0)−f (x0)

y0−x0
= 1.181617637 and, 

x1 = y0 exp
(

−f (y0)
y0h(x0,y0)

)

= −1.025295284.

 Similarly, we have the values in iteration 2:

Iteration 3:

One can obtain the function value at x3 = − 0.9236326590 
as f (− 0.9236326590) = − 5.3608 ×  10−11. Hence the 
required root x = − 0.9236326590 is obtained in 3 itera-
tions using the proposed algorithm.

Example 3 Consider a polynomial equation to find a 
real root.

with x0 = 0.6. Following Example 2 using the proposed 
algorithm (7), we have Iteration 1:

g(x1) =
f (x1 + f (x1))− f (x1)

f (x1)
= 1.222059474,

y1 = x1 exp

(

−f (x1)

x1g(x1)

)

= −0.9298264088,

h(x1, y1) =
f (y1)− f (x1)

y1 − x1
= 1.205191949,

x2 = y1 exp

(

−f (y1)

y1h(x1, y1)

)

= −0.9237026911.

g(x2) =
f (x2 + f (x2))− f (x2)

f (x2)
= 1.194895070,

y2 = x2 exp

(

−f (x2)

x2g(x2)

)

= −0.9236326626,

h(x2, y2) =
f (y2)− f (x2)

y2 − x2
= 1.194879228,

x3 = y2 exp

(

−f (y2)

y2h(x2, y2)

)

= −0.9236326590.

(9)0.986x3 − 5.18x2 + 9.064x − 5.287 = 0

Other iterations values are

Hence, the required approximate root of the given equa-
tion (9) is x = 1.929846242848.

Implementation of the proposed algorithm
 Implementation in MS Excel
The proposed method can be computed in Excel eas-
ily as follows. The number of iterations n, initial guess 
xn, f (xn), g(xn), yn, f

(

yn
)

, h
(

xn, yn
)

, xn+1 and f (xn+1) 
are placed in Excel cells, for example, in A5, B5, 
C5, D5, E5, F5, G5, H5 and I5 respectively. Enter the 
respective values in 6th row, i.e., n = 0,  x0, “= f(B6)”, 
“= (f(B6 + C6) − C6)/C6”, “= B6*EXP((− C6)/(B6 * D6))”, 
“= f(E6)”, “= (F6 − C6)/(E6 − B6)”, “= E6 * EXP((− F6)/
(E6 * G6))” and “= f(H6)” respectively in A6–I6. For sec- 
ond iteration, we need to replace  xn by  xn+1 in B7 using 
the command “= H6”. The last columns, C6–I6, are drag 
down to get next iteration value. Finally, drag down the 
entire 8th row, A7–I7, until the required number of 
iterations, see Fig.  1. Sample computations using MS 
Excel are presented in the following section.

Example 4 Consider the Eq. (9) presented in Example 
3 for sample computations using MS Excel.

with x0 = 0.6. Following the procedure in Section, we have 
the results as in Fig. 1.

g(x0) = 11.24874333,

y0 = 0.749437179,

h
(

x0, y0
)

= 3.427685909,

x1 = 1.101280164383, f (x1) = −0.270349537.

x2 = 1.387799514358, f (x2) = −0.048898877,

x3 = 1.568877491071, f (x3) = −0.00884392,

x4 = 1.753077607303, f (x4) = −0.004242231,

x5 = 1.883259728433, f (x5) = −0.00298145,

x6 = 1.922476516171, f (x6) = −0.000608725,

x7 = 1.929827783304, f (x7) = −1.59531E − 06,

x8 = 1.929846242848, f (x8) = −2.30926E − 14.

f (x) = 0.986x3 − 5.181x2 + 9.067x − 5.289
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Implementation in Maple

Example 5 Consider the equation ex + cos(x) − 1 = 0 given in Example 2 for sample computations in Maple.

Fig. 1 Proposed algorithm in Excel
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Conclusion
In this paper, we proposed a new root-finding algo-
rithm to solve the nonlinear equations. The main idea of 
this algorithm is based on the exponential method. The 
proposed algorithm doesn’t have any derivative even 
though exponential method is involved, and moreover 
it converges fast. Numerical examples are presented to 
illustrate and validation of the proposed methods. Imple-
mentation of the proposed algorithm in Excel and Maple 
is discussed with sample computations.

Limitations
In this paper, we focused on MS Excel and Maple imple-
mentation. However, the proposed algorithms can be 
implemented in many mathematical software tools such 
as Mathematica, SCILab, Matlab, etc.

Abbreviation
MS Excel  Microsoft Excel
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