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Abstract 

Objective The liver acts as an innate immunity-dominant organ and natural killer (NK) cells, are the main lympho-
cyte population in the human liver. NK cells are in close interaction with other immune cells, acting as the first line 
of defense against pathogens, infections, and injury.

A previously developed, three-dimensional, perfused liver-on-a-chip comprised of human cells was used to inte-
grate NK cells, representing pivotal immune cells during liver injury and regeneration. The objective of this study 
was to integrate functional NK cells in an in vitro model of the human liver and assess utilization of the model for NK 
cell-dependent studies of liver inflammation.

Results NK cells from human blood and liver specimen were isolated by Percoll separation with subsequent mag-
netic cell separation (MACS), yielding highly purified blood and liver derived NK cells. After stimulation with toll-like-
receptor (TLR) agonists (lipopolysaccharides, Pam3CSK4), isolated NK cells showed increased interferon (IFN)-gamma 
secretion. To study the role of NK cells in a complex hepatic environment, these cells were integrated in the vascular 
compartment of a microfluidically supported liver-on-a-chip model in close interaction with endothelial and resident 
macrophages. Successful, functional integration of NK cells was verified by immunofluorescence staining (NKp46), 
flow cytometry analysis and TLR agonist-dependent secretion of interleukin (IL)-6 and tumor necrosis factor (TNF)-
alpha. Lastly, we observed that inflammatory activation of NK cells in the liver-on-a-chip led to a loss of vascular bar-
rier integrity. Overall, our data shows the first successful, functional integration of NK cells in a liver-on-a-chip model 
that can be utilized to investigate NK cell-dependent effects on liver inflammation in vitro.
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Introduction
The liver acts as an innate immunity-dominant organ 
and natural killer (NK) cells therefore provide the first 
line of defense against pathogens, infections or tumors 
[1, 2]. NK cells are the main lymphocyte population in 
the human liver accounting for up to 50%, commonly 
defined by expression of the surface marker CD (clus-
ter of differentiation) 56 and lack of CD3 expression [3, 
4]. During liver disease the hepatic NK cell number is 
modulated, possibly due to increased recruitment of 
circulating NK cells to the liver [5–7]. A diverse rep-
ertoire of NK cell surface receptors allows recognition 
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and rapid response to cell damage and stress [8]. NK 
cells further coordinate early events of the innate 
immune response to injury through close interactions 
with other immune cells, such as T cells, dendritic cells 
or macrophages [8], and pro-inflammatory cytokine 
production, such as interferon gamma (IFN-gamma) 
[3, 8–10], tumor necrosis factor alpha (TNF-alpha) [3, 
10], and granulocyte–macrophage colony-stimulating 
factor [3]. In addition, it has been shown that NK cells 
produce interleukin-6 (IL-6), TNF-alpha, and IL-1beta 
after stimulation with lipopolysaccharides (LPS), a 
common toll-like receptor (TLR) agonist [3]. Further-
more, a variety of surface receptors, such as purinergic 
receptors and tumor necrosis factor-related apoptosis-
inducing ligand, control the cytotoxic activity of NK 
cells [9, 11] and facilitate NK cell maturation as well as 
function depend on their cellular localization site [12, 
13]. Functionally, NK cells contribute through complex 
orchestrated pathways, e.g. cytokine or receptor medi-
ated activation, changes of gene expression and inter-
action with other immune cells (e.g. macrophages), 
to clearance of damaged hepatocytes during hepatic 
injury and regeneration [14, 15]. By eliminating suscep-
tible targets through multiple, non-redundant mecha-
nisms, NK cells amplify or reduce the inflammatory 
response [12]. The close relationship and interaction 
of NK cells with other immune cells, such as Kupffer 
cells in the liver sinusoids, is mainly due to cytokine 
and chemokine secretion [4, 16, 17]. It has been shown 
that e.g. IL-12 and IL-18, secreted by Kupffer cells, are 
strong activators of NK cells and necessary for differen-
tiation of NK cells [18–20].

Currently, investigation of NK cell function and 
hepatic immune cell interaction is limited by the insuf-
ficient physiological complexity of available in  vitro 
models. One promising approach is the use of micro-
physiological systems that allow multicellular organ 
modelling in a dynamic microenvironment [21–23]. 
In this study, we expanded a previously established 
three-dimensional, microfluidically perfused liver-on-
a-chip model comprised of human cells (macrophages, 
endothelial cells, hepatocytes, stellate cells) repre-
sents a functional unit of the liver sinusoid and was 
previously described [24–26]. One study, dealing with 
taurolidine-induced liver damage, provided compara-
ble results generated from the liver-on-a-chip and an 
animal model [27]. The overall goal was to integrate 
human NK cells and show their recruitment and func-
tional response to inflammatory triggers within the 
liver-on-a-chip. Our study substantiates the use of the 
developed liver-on-a-chip model for studies of NK cells 
and paves the way for further immunological in  vitro 
studies.

Main text
Isolation of NK cells from human blood and liver specimen
Initially, NK cells were freshly isolated from either human 
blood or human liver tissue. Specifically, blood-derived 
NK cell populations were isolated from peripheral blood 
mononuclear cells (PBMC) using a previously described 
Percoll separation procedure, followed by PE electromag-
netic beads and LS columns sorting, according to man-
ufacturer’s instructions (Miltenyi Biotec, Auburn, CA, 
USA) [11]. Liver tissue-derived NK cells were isolated 
from cold-stored, tumor-free liver specimen immediately 
after surgical resection. Liver specimen were cut into 
small pieces, passed through a 200 gauge stainless mesh 
and separated similarly to blood-derived NK cells [28, 
29]. The amount and purity of NK cells was assessed by 
flow cytometry analysis using CD56 (positive selection) 
and CD3 (negative selection).  CD56+CD3− NK cell pop-
ulations from blood or liver tissue were used for further 
experiments immediately after isolation.

For both isolation procedures, purity of NK cell pop-
ulations were 89.3 ± 4.9% and 92.7 ± 4.6%, respectively 
(Fig. 1A), comparable to previous reports [29].

NKp46, a marker of NK cell cytotoxicity and matura-
tion [30, 31], was expressed on isolated NK cells, which 
was verified by immunofluorescence staining (Fig. 1B and 
Additional file  1: Fig.  S1). To activate NK cells in  vitro, 
these cells can be stimulated with a macrophage-derived 
cytokine mixture (e.g. IL-12/18) or TLR agonists [3, 9]. 
To activate isolated NK cells, they were challenged with 
TLR-agonists (LPS and Pam3CSK4), which were previ-
ously used to induce inflammation in the liver-on-a-chip 
model. As functional readout IFN-gamma was used, 
as one of the most important cytokines secreted by NK 
cells. IFN-gamma was measured in the supernatant of 
cell cultures using the cytometric bead array (CBA; BD 
Biosciences) according to the manufacturer’s protocol. 
After stimulation of isolated NK cells with LPS (100 ng/
ml) und Pam3CSK4 (250  ng/ml) for 16  h, IFN-gamma 
secretion was significantly increased in comparison to 
controls reflecting the activation and functionality of iso-
lated NK cells (Fig. 1C).

Integration of NK cells in the liver‑on‑a‑chip model
Human organ on-a-chip models enable the investigation 
of physiological and pathophysiological processes in vitro 
in a standardized, multicellular microenvironment. These 
complex in  vitro models offer advantages compared 
to common in  vitro and animal models through scal-
ability and replication of organ-specific microenviron-
ments ex  vivo. Furthermore, biochip-embedded models 
obtain an optimal supply with oxygen and nutrients due 
to microfluidic media perfusion of the chip [26]. This 
allows more physiological, multicellular tissue culture 
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improving cellular communication and functional polari-
zation [21]. Conventional cell cultures may overcome 
some species-dependent barriers, but are limited to 
reflect physiological conditions in respect to e.g. com-
plex cellular cross-communications [21]. Furthermore, 
improved culture conditions in organ-on-a-chip mod-
els also allow integration of circulating immune cells. 
Although conventional cell cultures will still remain the 
mainstay of cellular in  vitro analysis, the organ-a-chip 

technology will help to investigate complex cellular inter-
actions in more physiological conditions [21].

The underlying biochip-based model represents a 
three-dimensional functional unit of the liver with a per-
meable membrane serving as a cell culture surface and 
artificial barrier, allowing microfluidic perfusion and 
physiological arrangement of cellular structures in vitro. 
This liver-on-a-chip model used for our analysis was pre-
viously established and characterized, showing functional 

Fig. 1 FACS analysis for  CD56+CD3− NK cells in the NK cell suspension revealed high percentage of isolated NK cells derived from human blood 
and human liver specimen (A). Representative immunofluorescence images of NK cells (B) stained with cytotoxicity and maturation marker NKp46 
in monoculture of isolated blood NK cells (green = NKp46, blue = DAPI). IFN-gamma secretion assessed by Cytometric Bead Array (CBA) assay (BD 
Biosciences) of isolated NK cells after 16 h of TLR-receptor agonist stimulation (LPS and Pam3CSK4) was significantly increased compared to controls 
(C). Figures A–C present data of at least three independent experiments, p-values are assessed by Mann Whitney test
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improvements compared to conventional in  vitro cul-
ture [24, 27]. The so called multi-organ-tissue-flow 
(MOTiF) biochip, which is manufactured using a cyclic 
olefin copolymer (COC), was purchased from ChipShop 
GmbH (Jena, Germany) as previously described [25, 
26]. Briefly, the biochip design with two channels and 
one 12  µm thick PET membrane (pore diameter 8  µm 
with a density of 2 ×  105 pores/cm2) allows precise con-
trol of flow conditions maintained through perfusion of 
media through silicon tubes connected to a peristaltic 
pump. To reduce bubble formation in the biochip, ramp-
ing structures were introduced and chips were hydro-
philized by oxygen plasma treatment. Top and bottom 
side of the chip and channel structures were sealed by 
a 140  µm thick COC film. Prior to seeding of all cells, 
biochips were equilibrated overnight by media perfu-
sion of the upper (vascular/endothelial layer) and lower 
(epithelial layer) channel of the chip for 24 h. The human 
liver-on-a-chip was assembled by seeding of endothelial 
cells (human umbilical vein endothelial cells) as well as 
resident primary macrophages (vascular layer, upper 
channel) and hepatocytes (HepaRG) as well as stellate 
cells (LX2; epithelial layer, lower channel) as previously 
described [27]. In human livers, NK cells are located next 
to macrophages, lymphocytes and myeloid cells in the 
endothelial layer, leading to close interactions of these 
immune cells [4, 32]. To mimic the physiological state, 
isolated blood derived NK cells were added to the vas-
cular layer in a ratio of one to two, NK cells to Kupffer 
cells, respectively. The upper, vascular chamber was con-
tinuously perfused with media mimicking the blood flow, 
whereas the bottom, epithelial chamber was kept static 
with daily media exchange.

Perfusion and stimulation of liver‑on‑a‑chip model 
comprising NK cells
The main goal of this project was, to integrate func-
tional NK cells into the existing liver-on-a-chip model. 
Therefore, freshly isolated blood NK cells were seeded 
as described into the liver-on-a-chip model. After 48 h 
of perfusion, the presence of NK cells in the endothe-
lial cell layer was verified by immunofluorescence stain-
ing, analysis of the maturation and cytotoxicity marker 
NKp46 (Fig.  2A, B), and flow cytometry analysis. 
Hence, cells of the vascular layer were detached from 
the membrane and the NK cell population was ana-
lyzed by flow cytometry using CD3 (Horizon VE450), 
CD16 (PE), and CD56 (PE-Cy7). The NK cell popula-
tion was defined by expression of NK cell surface mark-
ers CD56 and absence of CD3 (Fig. 2C). To prove that 
NK cells were still responsive to inflammatory triggers, 
the liver-on-a-chip model was cultured for a maximum 

48 h with and without TLR-agonists (LPS/Pam3CSK4) 
stimulation. Under physiological conditions, the liver is 
constantly exposed to antigens, pathogens, and tumor 
cells, entering the liver via the blood flow to the liver 
sinusoids. The immune and endothelial cells are first 
exposed to these agents, and thus build the first line of 
defense [32, 33]. Comparable to the NK cells stimula-
tion in monocultures, the hepatic injury was induced by 
TLR stimulation through continuous perfusion of the 
upper chamber consisting of endothelial cells, NK cells 
and macrophages. Interestingly, a trend of increased 
expression of NKp46 after TLR stimulation compared 
to control was observed (p = 0.09, Fig.  3A), indicating 
an increased number and associated cytotoxic activ-
ity of NK cells in the model. Furthermore, the pro-
inflammatory cytokines IL-6 (p = 0.005) and TNF-alpha 
(p = 0.03) were significantly increased after TLR stimu-
lation compared to controls (Fig. 3B, C), potentially due 
to secretion by NK cells and macrophages. Neverthe-
less, IFN-gamma secretion was under the lower detec-
tion limit of the assay in the liver-on-a-chip-model after 
16 and 24  h of TLR agonist stimulation, respectively. 
These low IFN-gamma levels may be a result of NK 
cell differentiation or protective feedback mechanisms 
from other cell types in the liver-on-a-chip model lead-
ing to different NK cell function and cytokine secretion 
[1, 34]. TLR-stimulation of the liver-on-a-chip model 
further led to a disruption of the endothelial barrier 
assessed by the significantly reduced expression of VE-
cadherin compared to the control condition (p = 0.05, 
Fig. 3D, E).

In conclusion, our data highlights the first successful 
approach of integrated viable und functional NK cells 
isolated from human blood in a liver-on-a-chip model. 
NK cells and other immune cells, e.g. macrophages, 
have close interactions during inflammatory and immu-
nological processes in the liver. The aim of this investi-
gation was to establish an in vitro model including NK 
cells representing a functional hepatic unit as close as 
possible to the in  vivo situation. Our study highlights 
the potential of organ-on-a-chip models to specifically 
analyze the contribution of isolated immune cells under 
physiological conditions, which is currently only pos-
sible using animal models or human studies. Further 
functional analysis and cell interactions of NK cells 
in the liver-on-a-chip model need to be conducted 
to provide a more comprehensive analysis of patho-
physiological mechanisms. Future applications could 
be to investigate NK cells driven immunological pro-
cesses during hepatic inflammation (sterile or bacterial 
induced) with the advantage of a controlled and stand-
ardized in vitro model comprising of human cells.
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Limitations
NK cells were successfully isolated from human blood 
and human livers, but so far only human blood NK cells 
and not liver NK cells were integrated into the existing 
liver-on-a-chip model. Previous reports showed func-
tional differences between liver-resident NK cell popula-
tions and recruited NK cells from the blood invading the 
liver [7, 35]. Follow-up studies are necessary to determine 
the differences between different NK-cell populations in 

our liver-on-a-chip model. So far, we could show, that 
the transfer of freshly isolated blood-derived NK-cells 
into the liver-on-a-chip-model was possible, but further 
functional investigations and differentiation or matura-
tion processes of NK cells [36] were not investigated. In 
addition, studies without resident macrophages and only 
NK cells should elucidate the specific contribution of NK 
cells in the liver during inflammation. These issues are 
possible cornerstones of future studies using this pre-
sented model.

Fig. 2 Representative immunofluorescence image (A) of the endothelial layer including NK cells and without NK cells (B) stained with cytotoxicity 
and maturation marker NKp46 (green = NKp46, blue = DAPI, orange = VE-cadherin). Detection of  CD56+/CD3− NK cells by FACS isolated 
from the endothelial layer of the liver-on-a-chip model after 48 h of perfusion (C)
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Fig. 3 Stimulation with TLR-receptor agonists (LPS and Pam3CSK4) revealed a trend to higher expression of the maturation and cytotoxicity marker 
NKp46 on the endothelial layer of the liver-on-a-chip model (A). Increased TNF-alpha (B) and IL-6 (C) secretion of liver-on-a-chip including NK 
cells after 24 h perfusion with TLR-receptor agonists. Liver injury, reflected by endothelial cell layer disruption, assessed by immunofluorescence 
of VE-cadherin, was significantly increased after TLR-receptor agonist stimulation than in controls (D). Representative immunofluorescence image 
(E) showing disruption of the endothelial layer after application of the TLR receptor agonists. Figures A–D present data of at least three independent 
experiments, p-values are assessed by Mann Whitney test
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