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Abstract 

Objective The objectives of this research were to screen the anti-quorum sensing and antibiofilm activity of marine 
actinobacteria, isolated from several aquatic environments in Indonesia against several pathogenic bacteria, such 
as Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseu-
domonas aeruginosa.

Results Ten out of 40 actinobacteria were found to have anti-quorum sensing activity against wild-type Chromo-
bacterium violaceum (ATCC 12472); however, the validation assay showed that only eight of 10 significantly inhib-
ited the quorum sensing system of Chromobacterium violaceum CV026. The crude actinobacteria extracts inhibited 
and disrupted biofilm formation produced by pathogens. The highest antibiofilm inhibition was discovered in isolates 
11AC (90%), 1AC (90%), CW17 (84%), TB12 (94%), 20PM (85%), CW01 (93%) against Staphylococcus aureus, Bacillus 
cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. The 
highest biofilm destruction activity was observed for isolate 1AC (77%), 20PM (85%), 16PM (72%), CW01 (73%), 18PM 
(82%), 16PM (63%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella 
Typhimurium, and Pseudomonas aeruginosa, respectively. Actinobacteria isolates demonstrated promising anti-quo-
rum and/or antibiofilm activity, interfering with the biofilm formation of tested pathogens. Appropriate formulations 
of these extracts could be developed as effective disinfectants, eradicating biofilms in many industries.

Keywords Actinobacteria, Biofilm formation, Biofilm-forming bacteria, Chromobacterium violaceum, Quorum sensing, 
Quorum quenching

Introduction
Antimicrobials have been very effective in arresting 
pathogens’ growth in many circumstances [1, 2]. Unfor-
tunately, rampant usage and poor patient compliance 
have accelerated antimicrobial resistance in bacteria. 
Infection of antimicrobial-resistant (AMR) bacteria can 
be life-threatening. Moreover, AMR bacteria such as S. 

aureus and S. Typhimurium, can produce biofilms [3, 4]. 
In illnesses attributed to biofilm-forming bacteria, extra-
cellular matrix developed, increasing their resistance 
to chemical treatments up to 1000-fold greater than its 
planktonic form [5].

The uncontrolled growth of biofilm-forming bacte-
ria causes an enormous number of outbreaks and poses 
global risks by either infection, intoxication, or toxico-
infection. Therefore, there is a growing need to identify 
new solutions to control biofilm-forming pathogens [6].

Quorum sensing (QS) is the cell-to-cell communication 
activity of bacteria using autoinducers that regulates vir-
ulence factor and biofilm formation [6, 7]. Consequently, 
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inhibiting QS activity might initiate biofilms’ eradication. 
Without QS activity, bacterial aptitude to protect them-
selves will decline drastically.

Actinobacteria are fungi-like Gram-positive bacteria, 
known as the leading producer of secondary metabo-
lites, including novel anti-QS and biofilm inhibitors [8]. 
However, the research has been only minimally explored. 
This research aims to screen anti-QS compounds from 
actinobacteria using wild-type Chromobacterium vio-
laceum and Chromobacterium violaceum CV026 as QS 
indicators and quantify their antibiofilm activity against 
biofilm-forming pathogens.

Main text
Methods
Bacterial cultivation
Actinobacteria isolates were retrieved from previous 
studies [9, 10]. Actinobacteria were cultured on yeast 
malt extract agar (YMEA; 4  g yeast extract, 10  g malt 
extract, 4 g glucose, 2% agar) and incubated at 28 °C for 
7 days. Wild-type Chromobacterium violaceum (ATCC 
12472) and Chromobacterium violaceum CV026 as QS 
indicators were cultivated on Luria agar (LA; Oxoid) 
and incubated at 28 °C for 24 h. C. violaceum CV026 is a 
pigment-negative strain due to mutation in CviI, encod-
ing AHL synthase for autoinducer production. However, 
in the presence of exogenous AHL, C. violaceum CV026 
will express QS-mediated responses leading to pigment 
production [11]. Biofilm-forming bacteria B. cereus 
ATCC 14579, S. aureus ATCC 29213, E. faecalis ATCC 
33186, P. aeruginosa ATCC 27853, S. Typhimurium, and 
V. cholerae were cultivated onto LA, incubated at 37  °C 
for 24 h. These pathogens can initiate biofilm formation 
via QS activity [3, 4, 12–15].

Primary screening of anti‑quorum sensing activity
Primary screening was carried out using an overlay agar 
method [16] with modifications. Actinobacteria isolates 
were inoculated onto YMEA and incubated at 28  °C for 
3 days. Wild-type C. violaceum  (OD600 = 0.132, 100 µL) 
was mixed with 2 mL semi-solid (0.75%) LA and poured 
atop YMEA plates. The plates were incubated at 28 °C for 
24 h. Inhibited violacein production around actinobacte-
ria isolates signifies anti-QS activity.

Preparation of crude extract
The extract was obtained using liquid-liquid extraction. 
Actinobacteria isolate was grown into tryptic soy broth 
supplemented (Oxoid) with glucose (1% w/v) at 28  °C 
and 125 rpm for 7 days. The cultures were centrifuged at 
7800×g for 15 min. The supernatant was mixed with ethyl 
acetate (1:1) and shaken at 150 rpm for 24 h. The solvent 
was collected and evaporated using a rotary evaporator 

then dried using a vacuum oven. Crude extract was 
mixed in 1% v/v dimethyl sulfoxide (DMSO) to provide 5, 
10, and 20 mg/mL concentrations [17, 18].

Antimicrobial assay
Antimicrobial assays were performed using the agar well 
diffusion method [19] with modifications. Pathogens 
 (OD600 = 0.132) were spread onto brain heart infusion 
agar (BHIA, Oxoid). Wells were created and filled with 
the extract (50 µL, 5 and 10 mg/mL). DMSO (1% v/v) was 
used as the negative control, and streptomycin (10  mg/
mL) was used as the positive control.

Incubation at 37 °C for 24 h revealed clear zones, indi-
cating antibacterial activity.

Secondary screening of anti‑quorum sensing activity
Wild-type C. violaceum  (OD540 = 0.132) was spread 
onto BHIA plates. Wells were created and filled with the 
extract (50 µL, 5 and 10  mg/mL). DMSO (1% v/v) was 
used as the control [20]. The plates were incubated at 
28  °C for 24 h. Inhibited violacein production indicated 
anti-QS activity [21].

Quantification of antibiofilm activity
The antibiofilm activity was categorized as inhibition 
or elimination. To detect inhibition activity, pathogens 
 (OD600 = 0.132, 100 µL) cultivated into Brain Heart Infu-
sion Broth supplemented with glucose (2% w/v), and 
extracts (5 and 10  mg/mL, 100 µL) were transferred to 
the 96-well microplate. Biofilm inhibition activity was 
quantified after 24  h. For the elimination activity assay, 
another 96-well plate with bacterial culture was incu-
bated at 37  °C for 24  h. After biofilms were attached, 
extract was added and incubated for 24  h. Each patho-
genic culture was used as the positive control, while ster-
ile BHIB was used as the negative control.

After incubation, planktonic cells and media were 
discarded. Adherent cells were rinsed twice with ster-
ile water and stained with crystal violet (0.4% w/v) for 
30  min. The microplate was rinsed twice and air-dried 
for 5  min. Subsequently, 200 µL of ethanol was mixed. 
Absorbance was determined at 595 nm [22]. Antibiofilm 
activity was calculated using this equation:

Validation of Quorum sensing inhibition
Chromobacterium violaceum CV026  (OD600 = 0.132, 100 
µL) was mixed with 100 µL of extract (final concentra-
tion 10  mg/mL) and 1 µL hexanoyl-l-homoserine-lac-
tone (HHL, final concentration 100 mM, Sigma-Aldrich) 
diluted in acidified ethyl acetate (0.1% v/v acetic acid). 

%Activity
OD Control−OD Treated

OD Control
× 100%.
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Incubation at 28  °C for 24  h followed. Mixture without 
extract served as a positive control. After incubation, test 
tubes were centrifuged at 1000 rpm for 15 min. The pel-
let was mixed with 1 mL DMSO (1%v/v) and centrifuged 
at 1000  rpm for 15  min. The supernatant’s absorbance 
was measured at 540  nm [18]. Furthermore, to investi-
gate whether the main compounds in the extract were 
protein-based, the determination was carried out using 
proteinase-K. Each extract was treated with proteinase-K 
(100 µg/mL) for 2 h incubation at 37 °C and subjected to 
high-temperature treatment at 95 °C for 1 h. The treated 
extract was used for the validation assay. Total violacein 
produced by C. violaceum CV026 was compared with the 
untreated batch [23].

Statistical analysis
Data were compared using a one-way ANOVA based 
on a confidence level at 95% and Tukey HSD post-hoc 
analysis.

Examination of  biofilm formation by  scanning electron 
microscope (SEM) Bacillus cereus and Salmonella Typh-
imurium culture  (OD600 = 0.132) were spotted onto ster-
ile cover glass within sterile Petri dishes and incubated at 
37 °C for 24 h to form mature biofilms. After incubation, 
actinobacterial extract (100 µL, 10  mg/mL) was added 
and re-incubated for 24 h. The results were investigated 
using SEM at Dexa Laboratory of Biomolecular and Sci-
ence [24].

Results
First screening of anti‑quorum sensing activity
The results show that 10 out of 40 actinobacteria isolates 
had anti-QS activity (Additional file  1: Illustration S1). 
Those isolates were extracted and continued to the next 
step (Additional file 1: Illustration S2).

Antibacterial activity assay
Ten actinobacterial extracts showed no antibacterial 
activity against S. aureus, B. cereus, E. faecalis, P. aerugi-
nosa, and S. Typhimurium, but 3 of the 10 showed anti-
bacterial activity against V. cholerae. Those extracts were 
15PM, 18PM, and 20PM. Streptomycin as the positive 
control inhibited the growth of all pathogens. In contrast, 
DMSO as the negative control showed no antibacterial 
activity (Additional file 1: Illustration S3).

Secondary screening of anti‑quorum sensing activity
Ten actinobacterial extracts in 5 and 10 mg/mL concen-
trations still had anti-QS activity. It was demonstrated by 
the absence of violacein pigment around the wells (Addi-
tional file 1: Illustration S4).

Anti‑quorum sensing activity validation test and protein 
characterization
All treatments yielded lower absorbance than the con-
trol (Fig. 1). However, only 8 out of 10 extracts (10 mg/
mL) demonstrated statistically significant anti-QS 
activity against C. violaceum CV026: 1AC, 11AC, 
14PM, 15PM, 16PM, 18PM, CW01, and CW17. Treated 
extract of all isolates showed anti-QS activity distinct 
from the control. Increased absorbance suggests inter-
ference with anti-QS compounds due to proteolytic and 
high-temperature treatments, while lower values indi-
cate heightened anti-QS activity.

Biofilm inhibition and elimination assay
Crude extracts showed diverse antibiofilm activity in 
inhibiting and eliminating bacterial biofilms (Table 1).

Examination of biofilm formation by scanning electron 
microscope
The result showed the topographical of B. cereus and S. 
Typhimurium biofilms before and after treatment with 
actinobacterial extract. Considerable morphological 
changes occurred in bacterial biofilms.

Discussion
The primary screening of anti-QS activity showed that 
10 out of 40 isolates demonstrated anti-QS activity. In 
adapting to competitive environments, actinobacteria 
produce secondary metabolites such as anti-QS and 
anti-biofilms [25]. No clear zones were observed in the 
antimicrobial assay, indicating negative-antimicrobial 
activity, except in V. cholerae. Of the 10 actinobacte-
ria isolates, three (15PM, 18PM, and 20PM) inhibited 
the growth of V. cholerae. Those isolates were excluded 
in the V. cholerae antibiofilm assay. Extract in 5 and 
10  mg/mL concentrations inhibited the QS system of 
wild-type C. violaceum, as seen from lower pigment 
production around the wells. From the validation assay, 
only 8 of 10 isolates inhibited the QS activity of C. vio-
laceum CV026. The compounds in the extract might 
be damaging other components of the QS system, such 
as the stability and function of AHL, autoinducer syn-
thase, and its regulators [26, 27].

Anti-QS agents in extracts of 1AC, 14PM, 16PM, 
18PM, and CW17 isolates were likely proteins because 
higher absorbance value observed after proteinase-
K and high-temperature treatment. The increasing 
absorbance value implied reduced anti-QS activity. The 
treatment might affect proteinaceous anti-QS com-
pounds produced by actinobacteria, such as AHL-
lactonase, acylase, decarboxylase, oxidoreductase, 
and deaminase [28], which the treatment can easily 
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degrade. In the absence of anti-QS compounds, AHL 
will form protein-ligand complex, activating violacein 
production [29].

Extract from isolates 15PM, 20PM, CW01, and TB12 
treated with proteinase-K showed higher anti-QS activ-
ity, indicating degradation of proteins that competitively 
bind to similar receptors or any proteins that might 
inhibit the anti-QS activity [30]. Additionally, anti-QS 
compounds might be a proenzyme or peptides hence the 
reaction with proteinase-K would positively affect the 
anti-QS activity. LaSarre reported actinobacteria pro-
duce proteinaceous compounds activated by serine pro-
teases, enhancing anti-QS activity. [3, 8, 31].

Crude extracts had produced without fractionation 
and purification processes, potentially containing inhibi-
tors or analogs that affect compound interactions. The 
interactions between undesirable compounds inevi-
tably impact the effectiveness [32]. It might work 

antagonistically or synergistically, which could decrease 
or increase inhibition activity [31–33].

Biofilms consist of microorganisms and extracellular 
polymeric substances (EPSs). Disrupting the EPS layer 
might severely reduce biofilm formation. In S. aureus, the 
primary EPS components are polysaccharide intercellular 
adhesin, known as poly-N-acetyl-β-(1–6)-glucosamine, 
polysaccharide, proteins, and extracellular DNA (eDNA) 
[34]. B. cereus utilizes exopolysaccharides, proteins, and 
eDNA [35]. The EPSs of E. faecalis are predominantly 
eDNA and polysaccharides [36]. While P. aeruginosa’s 
EPS comprises eDNA, proteins, lipids, and polysaccha-
rides, such as Psl, Pel, and alginate [37]. In S. Typhimu-
rium, curli fimbriae and cellulose drive cell clustering 
and biofilm initiation [38]. In V. cholerae biofilms con-
sist of vibrio-exopolysaccharides, proteins, and eDNA 
[39]. Based on previous researches [9, 40], Most of the 
isolates are belonging to the genera Streptomyces and 

Fig. 1 Absorbance of total violacein produced by C. violaceum CV026
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Arthrobacter. Streptomyces produces ECM-degrading 
enzymes such as protease, amylase, nuclease, agarase, 
chitinase, and several organic acids such as docosanoic 
acid, tetracosanoic acid, arachidic acid, and erucic acid 
that are capable of inhibiting P. aeruginosa and S. aureus 
biofilms [41, 42]. Arthrobacter was reported to produce 
dextranase and xylanase, which may significantly eradi-
cate the P. aeruginosa, methicillin-resistance S. aureus, 
and E. coli biofilms. Additionally, Arthrobacter produces 
glucuronide and cyclic-depsipeptides, such as arthroam-
ide and turnagainolide, that could interfere the QS sys-
tem [42, 43].

Scanning electron microscopy showed the presence 
of B. cereus and S. Typhimurium biofilms. Antibiofilm 
activity can be observed due to the depletion and erosion 
across biofilm surfaces. Both extracts were competent to 
degrade the biofilm formation (Fig. 2) [44].

Conclusions
In summary, this study showed the potential of actino-
bacterial extracts performing anti-QS activity against C. 
violaceum along with biofilm inhibition and elimination 
activities against biofilm-forming pathogens. They could 
be developed as a safer and more efficient disinfectants in 
several industries.

Limitations
We did not determine the specific compound(s) responsi-
ble for antibiofilm and anti-QS activity and each isolate’s 
anti-QS mechanism. Furthermore, our characterization 
was limited to protein.
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without treatment (Control) (d) treated with crude extract of 18PM isolate
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(ATCC 12472). Illustration S2. Ten actinobacteria isolates with positive 
anti-quorum sensing against wild-type C. violaceum (ATCC 12472). Illus-
tration S3. Antimicrobial assay of actinobacterial crude extracts (50 μL, 10 
mg/mL) against tested bacteria (a) S. aureus (b) E. faecalis (c) B. cereus (d) 
V. cholerae (e) S. Typhimurium (f ) P. aeruginosa with K+: streptomycin (20 
μL;10 mg/mL) as positive control and K-: DMSO (50 μL; 1%v/v) as negative 
control. Illustration S4. Secondary screening of actinobacterial crude 
extract of 18PM and 20PM (50 μL) (a) 5 mg/mL and (b) 10 mg/mL against 
wild-type C. violaceum (ATCC 12472) with K−: DMSO (50 μL; 1%v/v) as 
negative control.
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