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Abstract 

The present investigation employs impulses and a non-local constraint to prove the existence are some various types 
of abstract differential and integrodifferential equations related to the Sobolev type. Semigroup theory, specifically 
variants of constant formula, is utilized to get the analytical results for those equations. Furthermore, findings using 
the Banach fixed point approach were examined using fuzzy numbers with values spanning the En range, which 
includes the normal, convex, upper semi-continuous, and compactly supported interval. A description is given for 
each situation to illustrate the principle.
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Introduction
There are numerous applications for the intriguing the-
ory of differential equations throughout abstract spaces 
in the fields of analysis and other mathematics. Ordi-
nary differential equations (ODEs), functional differen-
tial equations, partial differential equations (PDEs), and 
sometimes a combination of interacting systems of ordi-
nary and partial differential equations would be used, 
depending on the nature of the problems. In the fields of 

applied mathematics, engineering, biology, and the phys-
ical sciences, nonlinear differential and integral equations 
in abstract spaces have been utilized to deal with several 
problems. With significant applications in many areas of 
analysis and other disciplines, the theory of nonlinear 
differential and integral equations in abstract spaces is 
growing quickly.

The fuzzy semigroups of linear operators to solve fuzzy 
differential equations were originally proposed in the 
fuzzy literature by the authors of Gomes et al. [1]. Next, 
fuzzy Cauchy problems were studied by Kaleva [2] using 
nonlinear iteration semigroups (with exponential for-
mula). Ding and Kandel [3] examined how differential 
equations and fuzzy sets may be used to create fuzzy 
logic systems, also known as fuzzy dynamical systems, 
which are similar to fuzzy neutral functional differential 
equations. With its wide range of applications, semigroup 
theory has recently been the subject of much study in 
the classic literature. For the interested reader, we rec-
ommend the fascinating work by Pazy [4], in which the 

*Correspondence:
B. Radhakrishnan
radhakrishnanb1985@gmail.com
P. Shanmugasundram
psserode@mtu.edu.et
1 Department of Mathematics, PSG College of Technology, 
Coimbatore‑04, TamilNadu, India
2 Department of Mathematics, Sri Sai Ranganathan Engineering College, 
Coimbatore, TamilNadu, India
3 Department of Mathematics, PSG College of Arts & Science, 
Coimbatore‑14, TamilNadu, India
4 Department of Mathematics and Computational Sciences, Mizan-Tepi 
University, Tepi, Ethiopia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-023-06638-y&domain=pdf


Page 2 of 18Radhakrishnan et al. BMC Research Notes           (2024) 17:39 

author uses semigroups to solve partial and ordinary dif-
ferential equations.

PDEs are frequently employed to simulate a broad vari-
ety of scientific and engineering issues. They are typically 
expressed in several forms of differential or integrodiffer-
ential equations in abstract spaces. Several writers have 
studied integrodifferential equations in abstract spaces, 
including [5–8]. In general, an integrodifferential equa-
tion is an abstract representation of a large number of 
partial integrodifferential equations that emerge in issues 
involving wave propagation and other physical phenom-
ena. By addressing Sobolev type nonlinear interodiffer-
ential equations, Radhakrishnan et al. [9] investigated the 
existence of Sobolev type nonlinear neutral integrodiffer-
ential equations. Many writers have analyzed differential 
equations of the Sobolev type [10–12].

Nonlocal Cauchy problem, namely, the dif-
ferential equation with a non-local initial condi-
tion z(τ0)+ e(τ1, . . . , τn, z) = z0 (0 ≤ τ0 < τ1 < . . .

< τn ≤ τ0 + a and e is a given function) is one of the 
important topics in the study of analysis. The primary 
motivation behind interest in the area revolves around 
the non-local initial condition’s high efficacy over the 
standard one while treating physical issues. In fact, the 
conventional beginning condition z(0) = z0 could not 
be incorporated into a number of fascinating empirical 
events that the non-local initial condition represents. For 
instance, the function e(τ1, . . . , τn, z) may be given by

(ck , k = 1, . . . , n are constants). In this case, we are per-
mitted to have the measurements at τ = 0, τ1, . . . , τn, 
rather than just at τ = 0. More specially, letting 
e(τ1, . . . , τn, z) = −z(τk) and z0 = 0 yields a periodic 
problem and letting e(τ1, . . . , τn, z) = −z(τ0)+ z(τn) 
gives a backward problem. Byszewski [13] was the first to 
delve at the existence of solutions to evolution equations 
in Banach spaces with non-local constraints.

(τ1, . . . , τn, z) =

n
∑

k=1

ckz(τk)

In reality, experts agree that discretely emerging dis-
continuities enrich its continuous. The latter are also 
known as jumps or, from an energy standpoint, impulses. 
Many evolution processes are accompanied by abrupt 
shifts in condition at specific points in time. These pro-
cesses are subject to short-term perturbations that are 
insignificant in contrast to the process’s lifespan. As a 
result, it’s reasonable to presume that these disturbances 
occur instantly, in the form of impulses. As a result, dif-
ferential equations with impulsive effects serve as a natu-
ral description of observable evolution events in a variety 
of real-world issues, such as [14–21]. In some situations, 
such as the so-called neutral differential difference equa-
tions, the delayed argument occurs in both the deriva-
tive of the state variable and the independent variable. 
A neutral functional differential equation involves the 
derivatives concerning past events history or derivatives 
of functionals of the prior history, and the present state 
of the system. The book on neutral functional differential 
equations by Hale and Verduyn Lunel [22] and its refer-
ences are a useful resource.

In accordance with the premise that “all things occur-
ring in the real world are unstable and unexpected,” 
Zadeh[23] developed fuzzy set theory in 1965. In a 
number of research areas, the notion was proposed and 
implemented successfully. This hypothesis has lately been 
investigated further, with a variety of applications being 
proposed. To explain fuzzy conceptions, Diamand et  al. 
[24] established the metric space of fuzzy sets theory. 
Kaleva [25, 26] looked at fuzzy differential equations in 
broad sense. For further discussion on the several types 
of fuzzy differential equations, see [27–32].

Motivated by the literature, we are using the fixed 
point approach to investigate several types of Sobolev 
type Fuzzy neutral integro-differential equations with 
impulses in a fuzzy environment.

Problem formulation
The authors of this paper have to investigate if fuzzy neu-
tral impulsive nonlinear integrodifferential equations of 
the Sobolev type are subject to non-local conditions

(1.1)[Bz(ν)+P (τ , z(ν))]′ + Az(ν) =F(ν, z(ν))+

∫

ν

0

K

(

ν,µ, z(µ)
)

dµ

ν ∈ [0, a], ν �= νk
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where A,B : J → En denotes a fuzzy coefficient 
and J = [0, a] . The set of all upper semi continu-
ous convex regular numbers that are uncertain, 
with limited �−level intervals is designated as 
En . The function F,P ,K : J× En → En is non-
linear fuzzy function and z0 is a initial value 
and Ikz(νk) = �z(νk) = z(ν+k )− z(ν−k ), for all 
k = 1, 2, ...,m; 0 = ν0 < ν1 < ν2 < ... < νm < νm+1 = a;

Preliminaries
By giving each z ∈ Rn a membership grade, a fuzzy sub-
set of Rn is constructed using a membership function. In 
this way, the purpose of membership is addressed.

Across the analysis, the subsequent requirements were 
introduced: w maps Rn onto [0, 1], [u]0 constitutes a finite 
subset of Rn , u is fuzzy convex, and u is upper semi-con-
tinuous. In this instance, consider En represent the space 
of all fuzzy subsets u of Rn , encompassing upper semi-
continuous, normal, and fuzzy convex sets along with 
bounded supports. The space of all fuzzy subsets u of R is 
precisely expressed by E1.

A fuzzy amount A in R comprises a set that is fuzzy 
defined by the membership function χA spanning 
R to [0, 1]. A number that is fuzzy A also transforms into

with χA (·) in the closed interval 0 and 1
Let z in Rn and D be a nonempty subsets of Rn . Now the 

Hausdroff separation of B from D is defined by

(1.2)z(0)+

n
∑

i=1

ciz(νi) =z0

(1.3)�z(νk) =Ik(zνk ), k = 1, 2, ...,m,

u : R
n to the closed interval [0, 1].

A =

∫

z∈R

χA

z

Let D and B be nonempty subsets of Rn . The Hausdroff 
separation of B from D is defined by

In general,

With regard to two mathematical functions A and B , 
the Hausdroff gap between them can be expressed as 
H

d
(A,B) . The greatest measure d∞ on En is character-

ized as

and is obviously metric on En.
The writers of this paper make an inference that there is 

an operator E on En , which is provided by formula

We primary investigate the following fuzzy functional 
differential equation (FFDE) along with non-local initial 
condition of Sobolev type

where A,B : J → En denotes a fuzzy coefficient and 
J = [0, a] , En is the collection of all upper semi continu-
ous convex normal fuzzy numbers with bounded �−level 
intervals. The function F : J× En → En is nonlinear 
fuzzy function and z0 is a initial value.

Definition 2.1  A continuous function z(ν) of the inte-
gral equation

d(z,D) = inf{
∥

∥z − b
∥

∥ : b ∈ D}.

H
d
∗ (B,D) = sup{d(b,D) : b ∈ B}.

H
d
∗ (B,D) �= H

d
∗ (D,B).

d∞(x, y) = sup{Hd
(

[x]�, [y]�
)

: � ∈ (0, 1]}, for all x, y ∈ En,

E =

[

I +

n
∑

i=n

ciB
−1

S (τi)B

]−1
.

(2.1)(Bz(ν))′ = Az(ν)+ F(ν, z(ν)), ν ∈ J = [0, a]

(2.2)z(0)+

n
∑

i=1

ciz(νi) = z0,

z(ν) = B
−1

S (τ )BEz0 −

n
∑

i=1

ciB
−1

S (ν)E ×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, z(µ))dµ
}

+

∫

ν

0

B
−1

S (ν − µ)F(µ, z(µ))dµ+ B
−1

AS (ν)BEz0
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is said be a solution, of problem (2.1, 2.2) on J.

Remark 2.1  A solution of (2.1, 2.2) satisfies the condi-
tion (2.2). Then

and

Therefore

The subsequent assumptions are required in order to 
demonstrate the existence result: 

(A1)	� A : J → En is a fuzzy coefficient and 
{C (ν), ν ∈ En} of bounded linear operator in 
Banach space. There exist constants 
Ms ≥ 0,Mc ≥ 0 such that |S (ν)| ≤ Ms , for every 

z(0) = Ez0 + AEz0 −

n
∑

i=1

ciEB
−1

{

∫

νi

0

S (νi − µ)B
−1

F(µ, z(µ))dµ

}

z(νj) = B
−1

S (νj)BEz0 −

n
∑

i=1

ciB
−1

S (νj)BE

{

∫

νi

0

B
−1

S (νi − µ)F(µ, z(µ))dµ
}

+

∫

ν

0

B
−1

S (νj − µ)F(µ, zµ(µ))dµ

+ B
−1

AS (νj)BEz0.

z(0)+

n
∑

j=1

cjz(νj) =
[

I +

n
∑

i=1

ciz(νi)B
−1

S (τj)B

]

Ez0 −
[

I +

n
∑

i=1

ciz(νi)B
−1

S (τj)B

]

×

n
∑

i=1

ciE
{

∫

νi

0

S (νi − µ)B
−1

F(µ, z(µ))dµ
}

+

∫

νj

0

S (νj − µ)B
−1

F(µ, xµ(µ))dµ = z0.

ν ∈ [0, a] . Furthermore, take Ma = sup
0≤t≤a

|AS (ν)| 

and MB = |B−1
| . Let Mc =

∑

|ci|.
(A2)	� The function F : J× En → En satisfies the follow-

ing conditions: H
d
(

[F(ν, z(ν)]�,F(ν, y(ν)]�
)

≤ LfH
d
(zν(ν), zν(ν)) , for ν ∈ J and zν , yν ∈ En.

(A3)	� For our convenience, we choose 

Existence and uniqueness

Theorem 3.1  Assuming (A1)− (A3) retain, there exists 
a solution for (2.1)-(2.2) on J.

Proof  Consider the subset X  of C(J,En) . specified 
through

MbMS |BEx0| + bMbMsLf r

+ LcM
2

b
|B E |McbMsLf ≤ L; and

δ = bMbMsLf + bMcM
2

b
|B E |McMsLf .

Again, we define a mapping F : X → X  by

First to show that the operator F maps X  into itself. Now

X = {z : z(ν) ∈ C(J, En, |z(ν)| ≤ r, ν ∈ J}.

F (z(ν)) = B
−1

C (ν)BEz0 −

n
∑

i=1

ciB
−1

C (ν)E

{

∫

νi

0

B
−1

S (νi − µ)F(µ, zµ(µ))dµ

}

+

∫

ν

0

B
−1

S (ν − µ)F(µ, zµ(µ))dµ

+ B
−1

AS (ν)BEz0.
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From the assumption (A3) , |F (z(ν))| ≤ L . Therefore the 
F maps X  into itself. Also, if x, y ∈ X .

Therefore,

Hence,

|F (z(ν))| ≤|B
−1

C (ν)BEz0| + |

∫

ν

0

S (ν − µ)B
−1

F(µ, z(µ))dµ|

+|

n
∑

i=1

ciB
−1

C (ν)BE

∫

νi

0

B
−1

S (νi − µ)F(µ, z(µ))dµ|

≤MbMc|B E x0| + bMbMsLf r + LcM
2
b|B E |McbMsLf .

Hd
(

F (z(ν),F (y(ν)
)

=H
d
([

B
−1

S (ν)BEz0 −

n
∑

i=1

ciB
−1

S (ν)E ×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, z(µ))dµ
}

+

∫

ν

0

B
−1

S (ν − µ)F(µ, zµ(µ))dµ+ B
−1

AS (ν)BEz0

]�

,
[

B
−1

S (ν)BEy0

−

n
∑

i=1

ciB
−1

S (ν)E ×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, y(µ))dµ
}

+

∫

τ

0

B
−1

S (ν − µ)F(µ, y(µ))dµ+ B
−1

AS (ν)BEy0

]�)

≤H
d
([

n
∑

i=1

ciB
−1

S (ν)E ×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, zµ(µ))dµ
}

+

∫

ν

0

B
−1

S (ν − µ)F(µ, z(µ))dµ+ B
−1

AS (ν)BEz0

]�

,
[

n
∑

i=1

ciB
−1

C (ν)E

×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, y(µ))dµ
}

+

∫

ν

0

B
−1

S (ν − µ)F(µ, y(µ))dµ
]�)

≤[bMbMsLf + bLcM
2
b|BEMcMsLf |H

d
(

z(ν), y(ν)
)

.

d∞(F (z(ν),F y(ν)) = sup
ν∈J

H
d
(

F (z(ν),F (y(ν)
)

≤ sup
ν∈J

[aMbMsLf + aLcM
2
b|B E McMsLf |H

d
(

x(τ ), y(τ )
)

≤[bMbMsLf + bLcM
2
b|BEMcMsLf |d

∞
(z(ν), y(ν)).
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Since � < 1 , this show that the operator ζ is contraction 
on En and so, by Banach fixed point theorem, there exists 
a unique fixed point z ∈ F such that F (z(ν)) = z(ν) . 
This fixed point is the solution of (2.1)-(2.2). Thus Theo-
rem 3.1 is proved.

Case study on Sobolev type of FFDEs
Consider the fuzzy differential equation of the form with a 
non-local condition

H
1
(

F (z(ν),F y(ν)
)

= sup
ν∈J

d∞(F (z(ν),F (y(ν))

≤ sup
t∈J

[aMbMsLf + aLcM
2
b|BE |McMsLf d

∞
(z(ν), y(ν))

≤�H
1
(

z(ν), y(ν)
)

.

(3.1)(z(ν))′ = 3̃z(ν)+ 3̃νz(ν)2

The � level set of fuzzy number 3̃ : [3]� = [�+ 2, 4 − �] . 
Now � level set of F(ν, z(ν)) = 3̃νz(ν)2 is

The � - level set of 
n

∑

i=1

ciz(νi):
[

n
∑

i=1

ciz(νi)

]�

=

[

n
∑

i=1

ciz
�

l
(νi),

∑

n

i=1
cix

�
r (νi)

]

(3.2)z(0) =

n
∑

i=1

ci(νi).

[F(ν, z(ν)]� = [3̃νz(ν)2]�

= ν

[

(�+ 2)z�l (ν + k)2, (4 − �)z�r (ν + k)2
]

H
d
(

[F(ν, z(ν))]�, [F(ν, y(ν))]�
)

=H
d
(

ν[(�+ 2)(z�l (ν))
2, (4 − �)(z�r (ν))

2
],

t[(�+ 2)(y�l (ν))
2, (4 − �)(y�r (ν))

2
]

)

=tmax{(�+ 2)|(z�l (ν))
2
− (y�l (ν))

2
|, (4 − �)|(z�r (ν))

2
− (y�r (ν))

2
|}

=νmax{(�+ 2)|z�l (ν)+ y�l (ν)||z
�

l (ν)− y�l (ν)|,

(4 − �)|z�r (ν))+ (y�r (ν))||z
�
r (ν)− y�r (ν)|}

≤(4 − �)t|z�r (ν))+ y�r (ν)|max{|z�l (ν)− yαr (ν)|, |z
α

r (ν)− yαr (ν)|}

≤(4 − �)b|z�r (ν))+ y�r (ν)|max{|z�l (ν)− y�l (ν)|, |z
�
r (ν)− y�r (ν)|}

≤4b|z�r (ν))+ y�r (ν)|max{|z�l (ν)− y�l (ν)|, |z
�
r (ν)− y�r (ν)|}

=LfH
d
(

[z(τ )]�, [y(τ )]�
)

,



Page 7 of 18Radhakrishnan et al. BMC Research Notes           (2024) 17:39 	

where Lf = 4b|x�r (ν))+ y�r (ν)| meets the inequality 
stated within the circumstance (A2).

where Mc = |

n
∑

i=1

ci| satisfies the inequality which is given 

in condition (A2).
Thus, all conditions of Theorem 3.1 are satisfied. Hence 

the system (3.1)-(3.2) has a unique fuzzy solution.

Fuzzy neutral integrodifferential equation
We shall explore at the non-linear neutral fuzzy inte-
grodifferential equation of the form in this section.

where A,B : J → En denotes a fuzzy coefficient and 
J = [0, a] . The function F,P ,K : J× En → En is non-
linear fuzzy function and z0 is a initial value.

To prove the existence of (4.1)-(4.2), the following 
requirements must be fulfilled: 

(A4)	� The function P : J× En → En satisfy the 
condition 

H
d
(

[

n
∑

i=1

ciz(νi)]
�
, [

n
∑

i=1

ciy(νi)]
�

)

=H
d
([

n
∑

i=1

ciz
�

l (νi),

n
∑

i=1

ciz
�
r (νi)

]

,

[

n
∑

i=1

ciy
�

l (νi),

n
∑

i=1

ciy
�
r (νi)

])

≤McH
d
(

[z(νi)]
�
, y(τi)]

�

)

,

(4.1)

[

Bz(ν)+P (ν, z(ν))
]′

+ Az(ν) = F(ν, z(ν))+

∫

ν

0

K(ν,µ, z(µ))dµ

ν ∈ (0, a], ν �= νk

(4.2)z(0)+

n
∑

i=1

ciz(νi) =z0,

 There exists Lp ≥ 0.
(A5)	� The function K : J× En → En satisfy the 

condition. 

 There exists Lk ≥ 0.

(A6)	� For convenience 

 In this section, we’ll suppose that there is an operator E on 
En , which can be found using the formula

with

H
d
(

[P (ν, z(ν))]�, [P (ν, y(ν))]�
)

≤ LpH
d
(

z(ν), y(ν)
)

.

H
d
(

[K(ν, z(ν)]�, [K(ν, y(ν))]�
)

≤ LkH
d
(

z(ν), y(ν)
)

.

Mb|BEz0|Ms+McM
2
b|BE |Lp +Ms[Lp + aMs(Lp +Lf + aLk ]

+MbMs[Lp +Lf + aLk + b(Lp] ≤ ∇.

E =

[

I+

n
∑

i=1

ciB
−1

S (νi)B

]−1

E
{

B
−1

P (ν, z(ν))−B
−1

S (νi)P (0, z(0))+

∫

νi

0

AS (νi − µ)B
−1

P (µ, z(µ))dµ
}

+

∫

νi

0

B
−1

S (νi − µ)

[

F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

∈ En.
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Definition 4.1  An expression for the integral equation 
z(ν)

is said to be a fuzzy solution of (4.1, 4.2) on En.

(4.3)

z(ν)=B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE

{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0)

}

+

n
∑

i=1

ciB
−1

S (ν)BE

{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν

]

dµ

}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν

]

dµ.

Remark 4.1  The fuzzy functional neutral integrodifferen-
tial equation (4.1, 4.2) has a fuzzy solution that satisfies (4.3).

Therefore,

z(0) = Ez0 +

n
∑

i=1

ciE
{

B
−1

P (ν, z(ν))− B
−1

S (νi)E(0, z(0))}

×

[

AP (µ, zµ(ν))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

and

z(νj) = B
−1

S (νj)Ez0 +

n
∑

i=1

ciB
−1

S (νj)E
{

B
−1

P (ν, z(ν))− B
−1

S (νi)E(0, z(0))}

+

n
∑

i=1

ciB
−1

S (νj)E
{

∫

νi

0

S (νi − µ)B
−1

[

AP (µ, zµ(ν))+ F(µ, zµ(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (νj)P (0, z(0))

−B
−1

P (νj , zν(νj))

∫

νj

0

S (νj − µ)B
−1

[

AP (µ, zµ(µ))

+F(µ, zµ(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ.

z(0)+

n
∑

j=1

cjz(νj)

= B
−1

S (νj)Ez0 +

n
∑

i=1

ciB
−1

S (νj)E
{

B
−1

P (ν, z(ν))− B
−1

S (νi)E(0, z(0))}

+

n
∑

i=1

ciB
−1

S (νj)E
{

∫

νi

0

S (νi − µ)B
−1

[

AP (µ, zµ(ν))+ F(µ, zµ(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (νj)P (0, z(0))− B
−1

P (νj , zν(νj))

×

∫

νj

0

S (νj − µ)B
−1

[

AP (µ, zµ(µ))+ F(µ, zµ(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ.
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Theorem 4.2  If the assumptions (A1)-(A6) are true, then 
(4.1)-(4.2) offers an ambiguous conclusion on J.

Proof  Let F1 be the subset of C(J,En) defined by

We define a mapping F̃ : F1 → F1 by

First to show that the operator F̃ maps F1 into itself. 
Now

F1 = {z : z(ν) ∈ En, |z(ν)| ≤ r, for t ∈ J}.

(F̃ z)(ν) = B
−1

S (ν)[B
−1

S (ν)BEz0 −

n
∑

i=1

ciB
−1

S (ν)BE

×

{

∫

νi

0

B
−1

S (νi − µ)F(µ, z(µ))dµ+

∫ t

0

S (ν − µ)B
−1

F(µ, z(µ))dµ.

|(F̃ z)(ν)| = |B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE
{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0)
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ|

≤|B
−1

S (ν)BEz0| + |

n
∑

i=1

ciB
−1

S (ν)BE
{

B−1
P (ν, z(ν)− B

−1
S (νi)P (0, z(0)

}

|

+ |

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ)

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

| + |B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ|

≤Mb|B E x0|Ms +McM
2
b|B E |LpMs[Lp + bMs[Lp +Lf + aLk ]

+MbMs[Lp +Lf + bLk + aLp].

From the assumption (A6), |(F̃ z)(ν)| ≤ η . Therefore F̃ 
maps F1 into itself. Moreover, if z, y ∈ F1, then



Page 10 of 18Radhakrishnan et al. BMC Research Notes           (2024) 17:39 

where § = Mb|B E z0|Ms +McM
2

b|B E |LpMs[Lp + bMs

[Lp +Lf + bLk ]MbMs[Lp +Lf + bLk + bLp].

Now,

Therefore,

Since § < 1, the above equation, demonstrate the con-
traction associated with the operator F̃ over En and 

H
d
(

[F̃ z)(ν)]�, [(F̃ z)(ν)]�
)

=H
d
([

B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)B E

{

B
−1

P (τ , x(τ )−B
−1

S (τi)P (0, x(0)
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P(ν, z(ν))+

∫

ν

0

S (ν − µ)

× B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
]�

,
[

B
−1

S (ν)BEy0

+

n
∑

i=1

ciB
−1

S (ν)BE
{

B
−1

P (ν, y(ν)− B
−1

S (νi)P (0, y(0)
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, y(µ)+ F(µ, y(µ))

+

∫

µ

0

K(µ, ν, y(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, y(0))− B
−1

P (ν, y(ν))+

∫

ν

0

S (ν − µ)

× B
−1

[

AP (µ, y(µ))+ F(µ, y(µ))+

∫

µ

0

K(µ, ν, y(ν))dτ
]

dµ
]�)

≤Mb|BEx0|Ms +McM
2
b|B E |LpMs[Lp + bMs[Lp +Lf + aLk ]

+ MbMs[Lp +Lf + aLk + aLp] ≤ ∇H
d
(

[z(ν)]�, [y(ν)]�
)

,

d∞
(

[F̃ z(ν)]�, [F̃ y(ν)]�
)

≤ sup
�∈(0,1)

Hd
([F z(ν)]�, [F y(ν)]�)

≤ §d∞
(

z(ν), y(ν)
)

.

H
1
(

[F̃ z(ν)]�, [F̃ y(ν)]�
)

≤ sup
�∈(0,1)

d∞([F z(ν)]�, [F y(ν)]�)

≤ §H1
(

z(ν), y(ν)
)

.

hence by Banach fixed point theorem there exists a 
unique fixed point z ∈ F1 such that (F̃ z)(ν) = z(ν). This 
fixed point is then the solution of the problem (4.1, 4.2).

Case study: Consider the non-local condition on the 
fuzzy neutral indegrodifferential equation

The � level set of fuzzy number 3̃ : [3]� = [�+ 2, 4 − �] . 
Now � level set of F (τ , x(τ )) = 3̃τx(τ )2 is

(4.4)(z(ν)− 4z(ν))′ =3̃x(τ )+ 3̃τx2(τ )+ 3̃τx2(τ );

(4.5)x(0) =

n
∑

i=1

ci(τi).

[F (ν, z(ν))]� =[3̃νz(ν)2]�

=ν

[

(�+ 2)z�l (ν)
2, (4 − �)z�r (ν)

2
]

.
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The � - level set of 
∑n

i=1 ciz(νi):
[

∑

n

i=1
ciz(νi)

]�

=

[

∑

n

i=1
ciz

�

l
(νi),

∑

n

i=1
cix

�
r (νi)

]

H
d
(

[F(ν, z(ν))]�, [F(ν, y(ν))]�
)

=H
d
(

ν[(�+ 2)(z�l (ν))
2, (4 − �)(z�r (ν))

2
],

t[(�+ 2)(y�l (ν))
2, (4 − �)(y�r (ν))

2
]

)

= tmax{(�+ 2)|(z�l (ν))
2
− (y�l (ν))

2
|, (4 − �)|(z�r (ν))

2
− (y�r (ν))

2
|}

= νmax{(�+ 2)|z�l (ν)+ y�l (ν)||z
�

l (ν)− y�l (ν)|,

(4 − �)|z�r (ν))+ (y�r (ν))||z
�
r (ν)− y�r (ν)|}

≤(4 − �)t|z�r (ν))+ y�r (ν)|max{|z�l (ν)− y�r (ν)|, |z
�
r (ν)− y�r (ν)|}

≤(4 − �)b|z�r (ν))+ y�r (ν)|max{|z�l (ν)− y�l (ν)|, |z
�
r (ν)− y�r (ν)|}

≤4b|z�r (ν))+ y�r (ν)|max{|z�l (ν)− y�l (ν)|, |z
�
r (ν)− y�r (ν)|}

=LfH
d
(

[z(ν)]�, [y(ν)]�
)

,

where Lf = 4b|z�r (ν))+ y�r (ν)| satisfies the inequality 
which is given in condition (A2).

where Mc = |
∑n

i=1 ci| satisfies the inequality which is 
given in condition (A2).

where, Lp = 5b|x�r (τ ))+ y�r (τ )| satisfies the inequality 
which is given in condition (A4).

H
d
(

[

n
∑

i=1

ciz(νi)]
�
, [

n
∑

i=1

ciy(νi)]
�

)

=H
d
([

n
∑

i=1

cix
�

l (νi),

n
∑

i=1

cix
�
r (νi)

]

,

[

n
∑

i=1

ciy
�

l (νi),

n
∑

i=1

ciy
�
r (νi)

])

≤McH
d
(

[z(νi)]
�
, y(νi)]

�

)

,

H
d
(

[P (ν, z(ν))]�, [P (ν, y(ν))]�
)

=H
d
(

ν[(�+ 3)(z�l (ν)
2
), (5− �)(z�r (ν)

2
)],

τ [(�+ 1)(y�l (ν)
2
), (3− �)(y�r (ν))

2
]

)

=νmax{(�+ 1)|(z�l (ν))− (y�l (ν))|, (3− �)|(z�r (ν))− (y�r (ν))|}

≤5bHd
(

[z(νi]
�, y(νi]

�

)

= LpH
d
(

[z(νi]
�, y(νi)]

�

)

,

H
d
(

[

∫

ν

0

K(ν,µ, z(µ))]�, [

∫

ν

0

K(ν,µ, z(µ))]�
)

= H
d
(

ν[(�+ 2)(z�l (ν)
2
), (4 − �)(z�r (ν)

2
)],

τ [(�+ 1)(y�l (ν)
2
), (3− �)(y�r (ν))

2
]

)

= τ max{(�+ 2)|(z�l (ν))− (y�l (ν))|,

(4 − �)|(z�r (ν))− (y�r (ν))|}

≤ 4bHd
([z(νi]

�, y(νi]
�
) = LkH

d
(

[z(νi)]
�, y(νi)]

�

)

,

where, Lk = 4b|z�r (ν))+ y�r (ν)| satisfies the inequality 

which is given in condition (A5).
Thus, all conditions of Theorem 4.1 are satisfied. Hence 

the system (4.4, 4.5) has a unique fuzzy solution.
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Fuzzy impulsive neutral integrodifferential 
equation
Take into account the following: Neutral integrodifferential 
equation with fuzziness

where A,B : J → En denotes a fuzzy coefficient and 
J = [0, a] , En is the collection of all upper semi continu-
ous convex normal fuzzy numbers with bounded �−
level intervals. The function F,P ,K : J× En → En 
is nonlinear fuzzy function and z0 is a initial value 
and Ikz(νk) = �z(νk) = z(ν+k )− z(ν−k ) ∈ En . Denote 
J0 = [0, ν1], νk = (νk , νk+1], k = 1, 2, . . . ,m and define 
the following space:

Let P C ([0, a],X) = {z : z is a function from [0,  a] 
into X such that z(ν) is continuous at ν  = νk and left 
continuous at ν = νi and the right limit z(ν+k ) exists 
for k = 1, 2, . . . ,m }. Similarly as in ([33]), we see that 
P C ([0, a],X) is a Banach space with norm

(5.1)

[Bz(ν)+P (ν, z(ν))]′ + Az(ν) =F(ν, z(ν))+

∫

ν

0

K(ν,µ, z(µ))dµ

ν ∈ (0, z], ν �= νk

(5.2)z(0)+

n
∑

i=1

ciz(νi) = z0

(5.3)�z(νk) =Ik(zνk ); k = 1, 2, ...,m,

To demonstrate the system’s existence (5.1, 5.2, 5.3). The 
following requirements must be fulfilled in order for it to 

work: 

(A7)	�

 In this part, we presume that an operator E exists on En , 
which is described by the formula.

with

�z�P C = sup
ν∈[0,a]

�z(ν)�.

Hd
(

[Ik(z(ν
−

k ))]
�, [Ik(y(ν

−

k ))]
�

)

≤liH
d
(

[z(ν))]�, [y(ν))]�
)

,

k
∑

i=1

li =Li.

E =

[

I+

n
∑

i=1

ciB
−1

S (νi)B

]−1

E
{

B
−1

P (ν, z(ν))−B
−1

S (νi)P (0, z(0))+

∫

νi

0

AS (νi − µ)B
−1

P (µ, z(µ))dµ
}

+

∫

νi

0

B
−1

S (νi − µ)

[

F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

∈ En.

Definition 5.1  The integral equation’s z fuzzy solution

(5.4)

z(ν) = �B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE

×

{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ)))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ

−

∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))
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is said to be a solution of (5.1, 5.2, 5.3) on J.

Remark 5.1  The fuzzy neutral integrodifferential equa-
tion (5.1, 5.2, 5.3) of the Sobolev type satisfies (5.3).

and

Therefore,

z(0) = Ez0 +

n
∑

i=1

ciE
{

B
−1

P (ν, z(ν))− B
−1

S (νi)P (0, z(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))}

+

n
∑

i=1

ciE
{

∫

νi

0

S (νi − µ)B
−1

[

AP (µ, zµ(ν))+ f (µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

z(νj) = B
−1

S (νj)Ez0 +

n
∑

i=1

ciB
−1

S (νj)E
{

B
−1

P (ν, z(ν))− B
−1

S (νi)E(0, z(0))}

−

∑

0<νk<ν

B
−1

S (νj − νi)Ik(z(νj))

+

n
∑

i=1

ciB
−1

S (νj)E
{

∫

νi

0

S (νi − µ)B
−1

[

AP (µ, zµ(ν))+ F(µ, zµ(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (νj)P (0, z(0))− B
−1

P (νj , zν(νj))

∫

νj

0

S (νj − µ)

×B
−1

[

AP (µ, zµ(µ))+ F(µ, zµ(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ

−

∑

0<νk<ν

B
−1

S (νj − νi)Ik(z(νj)).

z(0)+

n
∑

j=1

cjz(νj)

= B
−1

S (νj)Ez0 +

n
∑

i=1

ciB
−1S(νj)E

{

B
−1

P (ν, z(ν))− B
−1

S (νi)E(0, z(0))}

−

∑

0<νk<ν

B
−1

S (νj − νi)Ik(z(νk))

+

n
∑

i=1

ciB
−1

S (νj)E
{

∫

τi

0

S (νi − µ)B
−1

[

AP (µ, zµ(ν))+ F(µ, zµ(µ))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (νj)P (0, z(0))− B
−1

P (νj , zν(νj))

×

∫

νj

0

S (νj − µ)B
−1

[

AP (µ, zµ(µ))+ F(µ, zµ(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ

−

∑

0<νk<ν

B
−1

S (νj − νi)Ik(z(νk)) = z0.

Theorem  5.2  If assumptions ( A1)-(A7 ) hold, then (5.1, 
5.2, 5.3) has a fuzzy solution on J.

Proof  Let F2 be the subset of P C (J,En) defined by



Page 14 of 18Radhakrishnan et al. BMC Research Notes           (2024) 17:39 

We define a mapping F̃1 : F2 → F2 by

To begin, we illustrate that the operator F̃1 transfers F2 
to itself. Now

F2 = {z : z(ν) ∈ En, |z(ν)| ≤ r, for t ∈ J}.

(F̃1z)(ν) = B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE

×

{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(τk))
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ)))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, z(µ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ

−

∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk)).

|(F̃1z)(ν)| =|B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE

×

{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ)))

+

∫

µ

0

K(µ, ν, x(τ ))dτ
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, zµ))+ F(µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dτ
]

dµ

−

∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))|

≤ Mb|BEz0|Ms +MbMsLp + bMbMsLpr + bMbMs[Lpr + bLkr]

+McM
2
b|B E |Ms

[

MsLpr +MsLp + bMs[Lf r + aLk ] +MsLi

]

+MsLi.

Let Mb|BEz0|Ms +MbMsLp + aMbMsLpr + aMbMs

[Lpr + aLkr] +McM
2

b|B E |Ms

[

MsLpr +MsLp + aMs

[Lf r + aLk ] +MsLi

]

+MsLi = LB . Hence,
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Therefore F̃1 maps F2 into itself. Moreover, if z, y ∈ F2, 
then

|(F̃1z)(ν)| ≤ LB.

H
d
(

[F̃1z)(ν)]
�, [(F̃1y)(ν)]

�

)

=H
d
([

B
−1

S (ν)BEz0 +

n
∑

i=1

ciB
−1

S (ν)BE

×

{

B
−1

P (ν, z(ν)− B
−1

S (νi)P (0, z(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, z(µ)+ F(µ, z(µ)))

+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (ν, z(ν))

+

∫

ν

0

S (ν − µ) B
−1

[

AP (µ, z(µ))+F (µ, z(µ))+

∫

µ

0

K(µ, ν, z(ν))dν
]

dµ

−

∑

0<νk<ν

B
−1

S (νk − νi)Ik(z(νk))
]�

,
[

B
−1

S (τ )BEy0 +

n
∑

i=1

ciB
−1

S (ν)BE

×

{

B
−1

P (ν, y(ν)− B
−1

S (νi)P (0, y(0))−
∑

0<νk<ν

B
−1

S (νk − νi)Ik(y(νk))
}

+

n
∑

i=1

ciB
−1

S (ν)BE
{

∫

νi

0

B
−1

S (ν − µ)

[

AP (µ, y(µ)+ F(µ, y(µ)))

+

∫

µ

0

K(µ, ν, y(ν))dν
]

dµ
}

+ B
−1

S (ν)P (0, z(0))− B
−1

P (τ , y(τ ))

+

∫

ν

0

S (ν − µ)B
−1

[

AP (µ, y(µ))+F (µ, y(µ))+

∫

µ

0

K(µ, τ , y(τ ))dτ
]

dµ

−

∑

0<νk<ν

B
−1

S (τk − τi)Ik(y(τk))
]�)

≤

[

Mb|B E z0|Ms +MbMsLp + bMbMsLpr + aMbMs[Lpr + bLkr]

+McM
2
b|B E |Ms

[

MsLpr +MsLp + aMs[Lf r + aLk ] +MsLi

]

+MsLi

]

H
d
(

[x(τ )]�, [y(τ )]�
)

≤LBH
d
(

[z(ν)]�, [y(ν)]�
)

.

Now,

Therefore

d∞
(

[F̃1z(ν)]
�, [F̃1y(ν)]

�

)

≤ sup
�∈(0,1)

H
d
(

[F̃ z(ν)]�, [F̃ y(ν)]�
)

≤ LBd
∞

(

z(ν), y(ν)
)

.
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Since LB < 1, the above equation, the operator F̃1 is a 
contraction on En , the Banach fixed point theorem indi-
cates that there exists a unique fixed point z such that 
(F̃1z)(ν) = z(ν). At this fixedpoint, the problems (5.1)–
(5.3) arrive at their conclusion.

Case study
Consider the fuzzy neutral indegrodifferential equation 
with non-local condition

H
1
(

[F̃1z(ν)]
�, [F̃1y(ν)]

�

)

≤ sup
�∈(0,1)

d∞
(

[F z(ν)]�, [F y(ν)]�
)

≤ LBH
1
(z(ν), y(ν)).

(6.1)
(x(τ )− 4̃τx2(τ ))′ =2̃[x(τ )+ τx2(τ )] + 3̃τx(τ )2

(6.2)x(0) =

n
∑

i=1

cix((τk))

(6.3)�x(τk) = Ik(x(τk)) =2e2τx(τ−).

Let P (τ , x(τ )) = 4τx
2
(τ ),F (τ , x(τ ) = 2̃x

2
(τ ),

∫

τ

0
K

(τ ,µ, x(µ))dµ = 3̃τx
2
(τ ) , Ik(x(τk)) = 2e2τx(τ−k ).

The � level set of fuzzy numbers

Now α level set of functions are

The � - level set of 
∑n

i=1 cix(τi):
[

∑

n

i=1
cix(τi)

]�

=

[

∑

n

i=1
cix

�

l
(τi),

∑

n

i=1
cix

�
r (τi)

]

where Lf = 3b|x�r (τ ))+ y�r (τ )| complies with the ine-
quality indicated within the case of (A2).

0̃ : [0]� = [�− 1, 1− �];

2̃ : [2]� = [�+ 1, 3− �];

3̃ : [3]� = [�+ 2, 4 − �];

4̃ : [4]� = [�+ 3, 5− �];

[F (τ , x(τ )]
�
=[2̃τx

2
(τ )]

�

=τ

[

(�+ 1)x
�

l
(τ )

2
, (2− �)x

�
r (τ

2
)

]

[P (τ , x(τ ))]
�
=[4̃τx(τ )]

�

=τ

[

(�+ 3)x
�

l
(τ ), (5− �)x

�
r (τ )

]

[

∫

τ

0

K(τ ,µ, x(µ))dµ

]�

=[3̃τx(τ )
2
]
�

=τ

[

(�+ 2)x
�

l
(τ )

2
, (4 − �)x

�
r (τ )

2

]

.

Hd
(

[F (τ , x(τ ))]�, [F (τ , y(τ ))]�
)

=Hd
(

τ [(�+ 1)(x�l (τ )), (3− �)(x�r (τ ))],

τ [(�+ 1)(y�l (τ )), (3− �)(y�r (τ ))]
)

=τ max{(�+ 1)|(x�l (τ ))− (y�l (τ ))|, (3− �)|(x�r (τ ))− (y�r (τ ))|}

=τ max{(�+ 1)|x�l (τ )+ y�l (τ )||x
�

l (τ )− y�l (τ )|,

(3− �)|x�r (τ ))+ (y�r (τ ))||x
�
r (τ )− y�r (τ )|}

≤(3− �)t|x�r (τ ))+ y�r (τ )|max{|x�l (τ )− y�r (τ )|, |x
�
r (τ )− y�r (τ )|}

≤(3− �)b|x�r (τ ))+ y�r (τ )|max{|x�l (τ )− y�l (τ )|, |x
�
r (τ )− y�r (τ )|}

≤3b|x�r (τ ))+ y�r (τ )|max{|x�l (τ )− y�l (τ )|, |x
�
r (τ )− y�r (τ )|}

=LfH
d
(

[x(τ )]�, [y(τ )]�
)

,

Hd
(

[

n
∑

i=1

cix(τi)]
�, [

n
∑

i=1

ciy(τi)]
�

)

=Hd
([

n
∑

i=1

cix
�

l (τi),

n
∑

i=1

cix
�
r (τi)

]

,
[

n
∑

i=1

ciy
�

l (τi),

n
∑

i=1

ciy
�
r (τi)

])

≤McH
d
(

[x(τi]
�, y(τi]

�

)

,



Page 17 of 18Radhakrishnan et al. BMC Research Notes           (2024) 17:39 	

where Mc = |
∑n

i=1 ci| complies with the inequality indi-
cated within the case of (A2).

where, Lp = 5b|x�r (τ ))+ y�r (τ )| fulfills the inequality stip-
ulated in premise (A4).

where, Lk = 4b|x�r (τ ))+ y�r (τ )| meets the inequality 
stated in the scenario (A5).

where, Li = 3e−2b satisfies the inequality which is given 
in condition (A7) . As a result, all of Theorem 5.1’s require-
ments are met. As an outcome, the fuzzy solution for the 
system (6.1, 6.2, 6.3) appears unique.

Conclusion
The outcomes of this work demonstrated the existence of 
specific types of impulsive neutral integrodifferential equa-
tions with Sobolev-type non-local conditions in a fuzzy 
environment. Fuzzy intervals that are normal, convex, 
upper semi-continuous, and compactly supported were 
used in conjunction with the fixed point strategy to exam-
ine the findings. An example is given in order to illustrate 
the concept for each case. Future research will expand 
this type of study to include control theory and fractional 
calculus.
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Hd
(

[P (τ , x(τ ))]�, [P (τ , y(τ ))]�
)

=Hd
(

τ [(�+ 3)(x�l (τ )
2
), (5− �)(x�r (τ )

2
)],

τ [(�+ 1)(yαl (τ )
2
), (3− �)(y�r (τ ))

2
]
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≤5bHd
(

[x(τi)]
�, y(τi)]

�

)

= LpH
d
(

[x(τi)]
�, y(τi)]

�

)

,

Hd
([

∫

τ

0

K(τ ,µ, x(µ))
]�

,
[

∫

τ

0

K(τ ,µ, x(µ))
]�)

= Hd
(

τ [(�+ 2)(x�l (τ )
2
), (4 − �)(x�r (τ )

2
)],

τ [(�+ 1)(y�l (τ )
2
), (3− �)(y�r (τ ))

2
]

)

= τ max{(�+ 2)|(x�l (τ ))− (y�l (τ ))|,

(4 − �)|(x�r (τ ))− (y�r (τ ))|}

≤ 4bHd
(

[x(τi)]
�, y(τi)]

�

)

= LkH
d
(

[x(τi)]
�, y(τi)]

�

)

,

Hd
(

[Ik(xk(τ
−
))]

�, [Ik(yk(τ
−
))]

�

)

= Hd
([

2e−2τx(τi)
]�

, [2e−2τ y(τ−)
]�)

≤ (3− �)2e−2τHd
([x(τi)]

�, y(τi)]
�
)

≤ LiH
d
(

[x(τi)]
�, y(τi)]

�

)
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