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Abstract
Two-sample MR is an increasingly popular method for strengthening causal inference in epidemiological studies. 
For the effect estimates to be meaningful, variant-exposure and variant-outcome associations must come from 
comparable populations. A recent systematic review of two-sample MR studies found that, if assessed at all, MR 
studies evaluated this assumption by checking that the genetic association studies had similar demographics. 
However, it is unclear if this is sufficient because less easily accessible factors may also be important. Here we 
propose an easy-to-implement falsification test. Since recent theoretical developments in causal inference 
suggest that a causal effect estimate can generalise from one study to another if there is exchangeability of effect 
modifiers, we suggest testing the homogeneity of variant-phenotype associations for a phenotype which has been 
measured in both genetic association studies as a method of exploring the ‘same-population’ test. This test could 
be used to facilitate designing MR studies with diverse populations. We developed a simple R package to facilitate 
the implementation of our proposed test. We hope that this research note will result in increased attention to the 
same-population assumption, and the development of better sensitivity analyses.
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Key message
• Two-sample Mendelian randomisation (2SMR) can be used to estimate the lifetime effect of a modifiable exposure 
on an outcome of interest.
• 2SMR point estimates are not interpretable if the exposure and outcome GWASs do not come from 
homogeneous populations, so called ‘same population’ assumption. However, this assumption is often not validated 
in applied studies.

MRSamePopTest: introducing a simple 
falsification test for the two-sample 
mendelian randomisation ‘same population’ 
assumption
Benjamin Woolf1,2,3*, Amy Mason4,5, Loukas Zagkos6, Hannah Sallis2,7†, Marcus R. Munafò1,2† and Dipender Gill4,6†

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-024-06684-0&domain=pdf&date_stamp=2024-1-17


Page 2 of 6Woolf et al. BMC Research Notes           (2024) 17:27 

Introduction
Mendelian randomisation (MR) is a natural experiment 
that leverages the independent and random inheritance 
of genetic variants to justify the assumptions of the 
instrumental variable (IV) framework [1–3]. Within this 
framework, genetic variants known to associate with an 
exposure of interest can be used to examine if an expo-
sure of interest causes an outcome . Two-sample MR 
(2SMR) applies this approach using summary statistics 
from genome-wide association studies (GWASs). Advan-
tages of 2SMR include greater statistical power, and the 
opportunity to apply estimators, like MR-Egger, that do 
not require all variants to be valid instruments [4]. How-
ever, 2SMR requires two additional assumptions: (1) that 
there is no sample overlap between the exposure and 
outcome GWAS, and (2) that the GWASs were sampled 
from the same population, or separate populations that 
are sufficiently similar that they can be treated as the 
same population.

The primary effect of the no-overlap assumption is to 
force weak instrument bias to attenuate results towards 
the null [4]. If the variants are strongly associated with 
the exposure (such as when the conventional p < 5 × 10− 8 
threshold has been used to select instruments), the 
amount of weak instrument bias should be very small. 
Violations of this assumption are thus unlikely to be a 
serious threat to the internal validity of an MR study.

The same-population assumption has received less 
attention, but is still important. If the effect estimates are 
drawn from heterogeneous populations, then the inter-
pretation of the MR estimate becomes unclear. When 
the GWASs do not have overlapping samples, the same-
population assumption is generally addressed by explor-
ing study demographics like age, sex, and ancestry [5]. 
However, this may not be sufficient because less easily 
accessible factors, such as the prevalence of smoking for a 
lung cancer MR study, may also be important. Other pro-
posals, like comparing the GWASs’ allele frequencies as 
a test of homogeneous ancestry [6], also cannot detect if 
more subtle differences are important. Better ways to test 
the same-population assumption are therefore needed.

Methodological developments in the field of causal 
inference are being applied to investigate the generalis-
ability of effect estimates. For example, Pearl developed 
the Data Fusion Framework as a “theoretical solution” to 
questions about the external validity of study estimates 
[7, 8]. Likewise, the Potential Outcomes framework can 

be modified to aid inference about generalisability and 
transportability [9–12]. These frameworks both postu-
late that we can generalise an estimate once there is an 
equivalence of factors, such as effect modifiers or selec-
tion effects, which would cause differences in the effect 
estimates between the study and target populations.

These frameworks could in theory be used to ensure 
that the estimates from one GWAS can generalise to 
another [13]. However, it is likely to be difficult (or impos-
sible) to apply in genuine summary data settings where 
researchers do not have access to individual level data. 
For example, the Potential Outcomes framework requires 
knowing what all the relevant effect modifiers are, and 
the differences in the prevalence of these between the 
studies. However, Genome Wide Interaction Studies [14], 
and other GWAS-type studies which include interac-
tions, are much rarer than GWASs, and are more likely 
to be underpowered. Researchers are therefore likely to 
struggle to ascertain all relevant effect modifiers. In addi-
tion, GWASs generally do not present sufficient demo-
graphic data to make this type of procedure possible for 
factors other than age, sex and ethnicity [15].

The randomised controlled trial (RCT) and meta-anal-
ysis literature have also introduced methods for combin-
ing estimates from different populations. Randomised 
controlled trials which have recurred people from dif-
ferent (sub-)populations, for example a multi-centre 
trial like the CRASH-II trial [16, 17], generally account 
for population differences by controlling for retirement 
centre in the analysis [18, 19]. The analogue for meta-
analyses is a multi-level meta-analysis in which known 
population differences between trials are modelled by 
adding a random effect to the analysis model [20]. How-
ever, as with the previous frameworks, these methods 
are difficult to apply to 2SMR. For example, given that 
MR studies would typically be comparing effects from 
only two studies, they would lack the degrees of freedom 
to implement a multilevel meta-analysis. It therefore 
appears that existing methods for combining estimates 
from different populations would be difficult to apply in 
their current form to an MR setting.

The above methods all agree that two studies can be 
treated as coming from the same populations if their 
effect estimates are homogeneous. It follows that the 
same-population assumption can be tested by estimating 
the heterogeneity in the SNP effect estimates for a phe-
notype that has been measured in both samples. When 

• We propose and validate a novel sensitivity analysis for this assumption, which checks if SNP effects for the same 
trait are homogeneous across the two populations.
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the difference between two effect estimates on the same 
scale is zero, they are more likely homogeneous. Hence, 
we propose testing if the difference in the SNP-pheno-
type association(s) between the exposure and outcome 
sample is equal to zero as an easy-to-implement test of 
this assumption.

Main text
Here we introduce a simple falsification test for the 
2SMR ‘same population’ assumption. Our proposed test 
involves testing if the (average) SNP effect for a relevant 
phenotype is homogeneous between the two samples 
being used in the analysis. Although this could be imple-
mented in multiple ways, a simple implementation is to 
test if the difference in the SNP effect estimates from 
the two samples is equal to zero for the SNP(s) used in 
the MR analysis. When multiple independent SNPs are 
used, the test can be implemented by meta-analysing the 
differences for each SNP (see the Supplement for more 
details). Where a difference is detected, that could be 
taken as evidence for a difference in the prevalence of 
effect modifiers (or another factor) between the two sam-
ples and hence, the effect estimates in one population will 
not generalise to another.

This test requires that at least one phenotype has been 
measured in both samples. We would suggest that when 
both samples have information on the exposure and out-
come, the falsification test should be implemented on 
both phenotypes to provide reassurance that all potential 
effect modifiers are the same, and both average causal 
estimates (SNP-exposure and SNP-outcome) are homo-
geneous. If the datasets only have information on one of 
the phenotypes then the test should be performed using 
this phenotype. This assumes that the effect modifier(s) 
are the same for the unmeasured phenotype, which may 
not always be true. The test can also be performed when 
the samples have measured a common phenotype that 
is not the exposure or outcome. Applying this test to a 
non-exposure/outcome phenotype requires the assump-
tion that this phenotype has the same effect modifiers as 
the exposure and/or outcome. This is a strong assump-
tion, and careful thought is needed in choosing which 
phenotype(s) to use. The availability of data from broadly 
phenotyped cohort studies, like the UK Biobank, should 
enable the application of this method.

In the Supplement we present a theoretical intuition, 
as well as a simulation to test the validity of our method. 
The simulation finds that our falsification test generally 
correctly detected differences in the SNP effects unless 
the difference in the average treatment effect between 
the samples and the variance explained by the instru-
ment was very small, difference ≤ 5% and variance ≤ 1% 
(Table  1). However, the false positive rate did increase 
as the variance explained by the instruments increased. Ta
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Although this increase was small and does not happen 
when meta-analyzing multiple SNPs (Supplementary 
Table 1), it is thus perhaps due to chance given only 1000 
iterations.

As an applied example, we compare the defences 
between GIANT and UK Biobank (UKB) weight GWASs. 
As a negative control, we did not expect to observe a dif-
ference between these two samples genetic associations 
for adult weight. When both were measured on the same 
scale (Kg) we did not observe a difference (Table 2), but 
we did when the UKB used a standard deviation scale 
instead. This shows the importance of ensuring that effect 
estimates are on the same scale. As a positive control, we 
compared the association between genetic associations 
for adult weight and birthweight, since variant-weight 
is known to vary with age, as a positive control [21]. 
We found that there were different effects between the 
genome-wide significant SNPs for adult weight and birth-
weight (Table 2).

Limitations
A major limitation of all falsification tests is that, while 
they can provide evidence against an assumption, they 
cannot necessarily provide evidence to support it. How-
ever, the test can also produce misleading evidence of 
differences.

We showed in our supplementary simulation that dif-
ferent amounts of (residual) bias between GWASs, such 
as from population structure, can result in the detecting 
differences even when the GWASs use the same under-
lying population. This could theoretically create issues 
when using data from GWAS consortia which meta-ana-
lysed smaller studies. Since not all consortia force each 
study to perform identical GWASs, it could be difficult 
to compare the methodology to a single study GWAS. 
However, our applications of this method here and else-
where to date imply that in practice consortia which use 
different methods to a single study GWAS, or which do 
not enforce homogenous methods, do not produce het-
erogeneous effects from single study GWASs drawn 
from a comparable population [22–24]. We would how-
ever suggest, when possible, triangulating our proposed 

sensitivity analysis with other approaches, such as a 
comparison of the measured demographic factors. Like-
wise, if two GWASs for the same phenotype have differ-
ent covariates, then a difference in effect estimates could 
represent the effects of different amounts of collider bias 
(e.g. if only one GWAS has adjusted for a heritable phe-
notype such as BMI) or non-collapsibility issues in the 
case of odds ratios. Finally, differing levels of measure-
ment error could also result in different effect estimates 
between even when the underlying populations are 
homogeneous.

If the same sample is used to choose genetic variants 
used in the test and estimate effects used for one of the 
populations, then this may create inflation (Winner’s 
curse) in this population but not in the other population. 
Hence the likelihood of a false positive (but not a false 
negative) might be higher in this setting. However, since 
we employed exactly this procedure in our applied exam-
ples, this bias may not be substantial in practice. This 
conclusion is supported by a recent simulation, which 
found that Winner’s curse introduced negligible amounts 
of bias for genome-wide significant SNPs in UK Biobank-
sized GWASs [25, 26].

Three additional, but important, caveats need to be 
considered. Firstly power: because SNP effect estimates 
are often imprecise, this test may be underpowered. As 
with MR studies, power can sometimes be increased by 
including more SNPs that are less strongly associated 
with the exposure. However, including SNPs not used in 
the MR analysis will require assuming that these SNP’s 
effects are themselves homogeneous to those used in 
the MR analysis. In addition, if the SNP effect estimates 
are less precise, adding them could add noise and reduce 
power. Second, as illustrated in our applied example, our 
method requires that each GWAS measures effects with 
the same units. Finally, as with 2SMR, our proposed test 
requires that the SNP effect alleles between the GWASs 
have been harmonised.

Here we have focused on the use of MR for effect esti-
mation. An alternative approach is to use MR to test the 
null hypothesis [27]. Testing for homogeneity is unneces-
sarily stringent when the MR study is only testing the null 

Table 2 Results of the applied analysis comparing GIANT and UKB weight GWASs. GIANT = the 2013 Genetic Investigation of 
ANthropometric Traits consortia GWAS [28]. UKB = Ben Ellsworth UK Biobank GWASs [15]. GWS = genome wide significant (p < 5 × 10− 8)
GWAS 1 GWAS 2 p-value of meta-analysed dif-

ference between the 11 GWS 
GIANT SNPs

Interpretation

Fixed effects Fisher’s method

GIANT 
weight (Kg)

UKB weight (Kg) 0.130 0.387 Since these are similar phenotypes in simpler populations, we should not, and do 
not, observe a difference in effect between the two GWASs

UKB weight 
(SD)

< 0.001 < 0.001 When the GWASs are measured using different scales, we can misleadingly detect 
a difference between them

UKB birth-
weight (Kg)

< 0.001 < 0.001 Variant-weight associations are known to change with age. As expected, we there-
fore observe a difference in associations between adult weight and birthweight
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hypothesis. However, a monotonic version of the same 
population assumption is still needed. At an extreme, a 
study interested in the effects of alcohol consumption on 
cardiovascular disease which extracts variant-outcome 
associations from a GWAS in a population who do not 
drink will find a null MR association even if there is are 
strong variant-exposure associations in an exposure 
GWAS from a population who drink.

Conclusions
Our proposed test allows researchers to assess the same-
population assumption when the GWASs come from 
subtly different populations . For example, when using 
a multi-sex exposure GWAS, like smoking, with a sex-
specific outcome, like complications during pregnancy. 
In addition, because our method does not require knowl-
edge of specific effect modifiers, it is robust to issues 
relating to unmeasured covariate. Although the test can-
not prove the assumption and will therefore often be 
sub-optimal, we hope that this research note will result 
in increased attention to the same-population assump-
tion, and prompt the development of better sensitivity 
analysis.
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