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Abstract 

Objective The high industrial demand for Stevia cultivation (Stevia rebaudiana) has increased due to its high ste-
vioside content derived from the leaves. However, the low germination rate makes the cultivation of the plant 
become the main obstacle. Therefore, an efficient cultivation technique is required. This present work aims to analyze 
the effect of five combinations of Kinetin (Kin) and benzyladenine (BA) on stevia micropropagation using nodal seg-
ment explants.

Results The micropropagation of stevia was performed using Murashige and Skoog (MS) medium supplemented 
with BA and Kin. We analyzed different organogenesis and callogenesis responses. In addition, the number of shoots 
and root formed during in vitro culture were also observed. Our results demonstrated that all treatments with Kin, 
both alone and in combination with BA, resulted in the development of callus on all nodal segment explants. 
Explants treated in MS with 1 mg  L−1 BA exhibited the best average of shoot number (36.27). In contrast, the treat-
ment without PGR resulted in the best root formation (2.6). The overall results suggested that different combination 
of BA and Kin resulted in distinct organogenesis responses, where 1 mg  L−1 of BA was potentially used for boosting 
the number of shoots in micropropagation of stevia accession Mini.

Keywords Callogenesis, Micropropagation, Stevia rebaudiana, Organogenesis, Plant growth regulators

Introduction
The study on tropical medicinal plants is of particular 
interest to biotechnology-based industries. A large por-
tion of pharmaceutical compounds have been investi-
gated and produced [1]. Stevia (Stevia rebaudiana) is a 
food-flavoring and medicinal herb plant indigenous to 
Paraguay. This perennial plant is a member of the Com-
positae family. Stevia leaves are known to be sweeter 

than sugarcane. This is mainly due to the glycosides con-
tent [2]. Stevia leaf glycosides are calorie-free and have 
a nearly zero glycemic index, making them suitable for 
individuals with diabetes and those aiming to lose weight 
[3, 4]. Stevia sugar is widely used in the food and bever-
age industries as well as for its antibacterial and antioxi-
dant properties. The sweetness derived from Stevioside 
is not metabolized in the body, making it highly recom-
mended for individuals with diabetes, hypertension, obe-
sity, and fungal infections [5, 6]. The utilization of stevia 
as a sweetener has been well-established in advanced 
countries such as the United States and Japan. In Japan, 
5.6% of marketed sugar is stevia sugar, known as “sutebia” 
[7].

The widespread application of stevia in various indus-
tries has created promising opportunities for stevia 
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cultivation. However, stevia cultivation faces challenges 
in its propagation. Low germination rate makes the 
cultivation of the plant become the main obstacle [8]. 
Conventionally, the propagation of stevia uses stem cut-
tings. Nevertheless, it requires a lot of mother plants as 
main sources, making large-scale cultivation inefficient 
[9]. Therefore, finding a rapid and efficient method of 
propagation is necessarily needed. Plant in  vitro propa-
gation might be an alternative way to accelerate plant 
cultivation.

In vitro propagation takes advantage of the totipo-
tent properties of the plant cells to self-regenerate into 
many genetically identical new plants [10]. This method 
requires appropriate culture media supplemented with 
plant growth regulators (PGRs). Some studies showed 
that different types of PGRs affected the ability of shoot 
regeneration. Cytokinin-based PGRs have been known 
to induce shoot formation and proliferation [11]. Several 
studies used 6-Benzyladenine (BA) and Kinetin (Kin) to 
mass propagate stevia via tissue culture technique [12, 
13]. However, each plant genotype develops different 
responses against environmental conditions [14]. Moreo-
ver, different genetic profiles of the plants among plant 
species also resulted in a distinct in vitro growth perfor-
mance of the plant [15, 16].

In some stevia tissue culture studies, a variety of PGRs 
have been used to promote shoot proliferation. For 
instance, 6-benzylamino purine (BAP), Kin, and BA [17, 
18]. Silver nanoparticles (AgNps) in plant in vitro micro-
propagation was also recently reported to accelerate 
shoot proliferation [19, 20]. Interestingly, plant growth 
responses during in  vitro culture may vary depending 
on the PGRs concentration [21, 22]. Some stevia geno-
types have been cultivated in Indonesia. It includes stevia 
accession “green,” “Jumbo,” “purple,” “yellow,” and “mini.” 
This present work was conducted to investigate the influ-
ence of BA and Kin on stevia (genotype mini) tissue 
culture.

Materials and methods
Sterilization of plant explants and establishment of culture 
medium
The stevia (S. rebaudiana) accession  Mini was obtained 
from the Indonesian Sweetener and Fiber Crops Research 
Institute. Some uniform nodal segments were collected 
to be used further as explants. Before being subjected to 
surface sterilization, the nodal segments were cleaned 
using continuous tap water for 30  min. Subsequently, 
70% ethanol (EtOH) was used to immerse the explants 
for 1  min. The explants were then surface sterilized by 
submerging in a 1.5% sodiumhypochlorite (NaOCl) for 
5  min. Subsequently, the nodal segments were washed 
four times using sterile aquaest to eliminate sterilant 
agent traces.

The solid MS culture medium was prepared by mixing 
4.4 g/L MS media (PhytoTech  Lab®) and 30 g/L sucrose 
(Duchefa Biochemie, Netherlands). The culture medium 
was solidified with 8.2  g/L gelrite powder (PhytoTech 
 Lab®). A series of PGRs concentrations were applied to 
the MS medium. The concentration of BA ranged from 0 
to 2 mg  L−1, whereas the concentration of Kin was 0, 2, 4, 
and 8 mg  L−1. A 5.7–5.8 pH adjustment was made to the 
medium before being poured (25 ml) into sterile contain-
ers. Finally, the prepared culture medium was autoclaved 
for 20 min at 121 °C.

In vitro inoculation and growth conditions
The previously sterilized nodal explants were then inocu-
lated into an MS solid medium without PGRs. They were 
grown in a culture room under 40 W of cool white fluo-
rescent light and at 25 ± 2 °C for ten weeks. We used the 
axenic nodal segments obtained from the previous culture 
as secondary explants for this present work. The axenic 
nodal segments were placed into an MS medium contain-
ing different combinations of BA and Kin. All treatments 
were incubated in a grow room at 25 ± 2 °C under 40W of 
cool white fluorescent, 16/8 h (light/dark) photoperiod for 
ten weeks. Each treatment consisted of five replications.

Plant growth measurement and data analysis
The growth response was determined based on shoot 
formation and callogenic frequency [21]. The equations 
used in this study were as follows:

(1)Shoot formation frequency =
Number of explants forming shoots

Total number of explants
x100

(2)

Callogenic frequency =
Number of explants forming callus

Total number of explants
x100
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Mean number of shoots and roots formed during the 
incubation period was also measured and statistically 
analyzed using two-way anaylsis of variance (Minitab 19), 
followed by the Tukey post-hoc test.

Results
Organogenesis and callogenesis responses
Plant Growth Regulators (PGRs) are non-nutrient 
organic compounds functioning at low concentrations to 
accelerate or inhibit plant growth and development pro-
cesses. We observed that different concentrations of BA 
and Kin resulted in distinct organogenesis and callogen-
esis responses (Table  1). Our results demonstrated that 
almost all of the nodal segments grown on MS medium 
with different PGRs combinations formed shoot. How-
ever, their frequency of shoot formation varied and 
ranged from 45 to 100% (Table  1). Notably, treatment 
with 1 mg  L−1 BA and 8 mg  L−1 Kin exhibited the lowest 
shoot formation. Meanwhile, treatment with BA alone 
(0.5; 1; 1.5, and 2 mg  L−1) and with BA and a low Kin con-
centration (2 mg  L−1) led to the induction of a significant 
shoot formation.

Further analysis showed that explants responded to the 
PGRs tested in the form of callus. Interestingly, explants 
developed callus in all treatments using low and high 
Kin concentrations. In contrast, an absence of callogen-
esis was resulted in treatment without the addition of 
Kin (Table 1). Our morphological observation also dem-
onstrated that the callus formed in this study was com-
pact and brownish (Fig. 1). Our findings imply that BA is 
crucial to enhancing shoot formation, whereas Kin pro-
moted callus formation in stevia tissue culture.

Table 1 Percentage of explants showing organogenesis and 
callogenesis responses in S. rebaudiana genotype Mini after 
10 weeks of culture

Combination of plant growt 
regulators

Shoot formation 
frequency (%)

Callus 
formation 
frequency (%)

BA (mg  L−1) Kin (mg  L−1)

0 0 100 0

0.5 0 100 0

1 0 100 0

1,5 0 100 0

2 0 100 0

0 2 90 100

0,5 2 100 100

1 2 90 100

1,5 2 100 100

2 2 65 100

0 4 85 100

0.5 4 90 100

1 4 60 100

1.5 4 65 100

2 4 60 100

0 6 75 100

0.5 6 75 100

1 6 50 100

1.5 6 60 100

2 6 85 100

0 8 95 100

0.5 8 75 100

1 8 45 100

1.5 8 75 100

2 8 85 100

Fig. 1 Organogenesis and callogenesis respons of S. rebaudiana after ten weeks of culture. A. Axenic nodal segment of S. rebaudiana treated 
with 0.5 mg  L−1 BA + 2 mg  L−1 Kin; B. 0.5 mg  L−1 BA + 4 mg  L−1 Kin. White arrows indicate: (1) shoot; (2) callus (White bar = 0.5 cm)
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Shoot multiplication in stevia tissue culture
Shoot formation is the primary goal of plant in  vitro 
propagation. Appropriate and optimal concentrations of 
PGRs potentially induce the formation of shoots. A two-
way ANOVA analysis revealed that combining Kin and 
BA with different concentrations significantly affected 
the number of shoots (P value < 0.05). Treatment with BA 
alone (1 mg  L−1) generated the most significant number 
of shoots (36.27 shoots per explant) (Fig. 2). In contrast, 
a combination of 1 mg  L−1 BA and 8 mg  L−1 Kin resulted 
in the lowest number of shoots (0.71) (Table  2). Nota-
bly, an absence of BA resulted in low shoot formations 
(Table  2). Therefore, it might suggest that BA induces 
shoot multiplication.

Effect of BA and KIN combination on root formation 
in stevia tissue culture
Root formation is essential for preparing the plantlets 
before being transferred to the greenhouse. In this study, 
we reported that several explants responded to root for-
mation (Additional file  1: Table  S1). Our data showed 
that the interaction between BA and Kin significantly 
affected the number of roots per explant (p-value < 0.05). 
Interestingly, explants treated with MS 0, without PGRs 
addition had highest number of roots (2.64 roots per 
explants) (Additional file 1: Table S1). A low level of cyto-
kinin might help the development of roots in stevia. This 
study detected few root formations when explants were 
treated in MS with 0.5  mg   L−1 BA. Meanwhile, greater 
BA and Kin concentrations resulted in zero root forma-
tions (Fig. 3).

Fig. 2 Shoot formation in Stevia Rebaudiana tissue culture after ten weeks of treatment. Shoot derived from explant treated in MS with no PGRs 
applied (A, B); 0.5 mg  L−1 BA (C, D); 1 mg  L−1 BA (E, F) (White bar = 0.5 cm)
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Discussion
Plant organogenesis response is a critical parameter in 
plant in vitro micropropagation studies. It is tightly cor-
related with the application of PGR. The latter directs 
plant growth and the differentiation of plant cells and 
tissue during regeneration. This present study used two 
cytokinin-based PGRs, the 6-Benzyladenine (BA) and 
Kinetin (Kin). Previous studies showed that adding BA 
and Kin resulted in good shoot proliferation in Thuarea 
involuta and Hyoscyamus niger L. [23, 24]. Another study 
also reported that combining BA and Kin can synergisti-
cally promote shoot regeneration in Lagenaria siceraria 
[25].  Even though both BA and Kin give different plant 
organogenesis responses. Our data demonstrated that 

BA significantly induced shoot formation in stevia tissue 
culture, compared to Kin. Our findings support previous 
studies on stevia in vitro culture [17] [26, 27].

Callogenesis is another effect that commonly appears 
during a plant in  vitro culture. It describes the devel-
opment of an amorphous and disorganized mass of 
cells forming on plant explants’ surface [28]. It is 
worth noting that all Kin concentrations added in the 
MS medium could induce callus formation. It was 
described that the use of 3–5  mg   L−1 of Kin results 
in callus formation [29]. The regulation of cytokinin 
in promoting callus formation is less clear than those 
promoted by auxins. However, it is believed that type 
B Arabidopsis Response Regulators (ARRs) mediate cal-
lus induction [30]. It was also reported that cytokinins 
induce plant division, leading to the formation of undif-
ferentiated callus [31].

In this study, we reported that 1 mg  L−1 BA induced a 
significant number of stevia shoots. It was also reported 
that BA was more effective for stevia shoot multiplica-
tion [12, 32]. Several studies also described the effec-
tiveness of BA to induce shoot multiplication in other 
species such as Kaempferia parviflora, Dalbergia nigra, 
and Cordia subcordata [33–35]. BA and Kin are known 
as cytokinin-based PGR, which positively promotes 
shoot multiplication in plant tissue culture studies 
[36].  Basically, cytokinins stimulate plant cytokinesis 
[37]. Benzyladenine (BA) significantly shortened the S 
phase period during the cell cycle (from G2 to mitosis, 
the DNA and protein synthesis stages of cell division). 
It was postulated that cytokinins promote cell division 
in plant tissue culture by accelerating the transition 

Table 2 Effect of Kin and BA combinations in shoot proliferation of the stevia tissue culture after 10 weeks of culture

* Different letters mean statistically significant difference between all treatments at 0.05 level

Combination of PGRs Average number of 
shoots

Combination of PGRs Average 
number of 
shootsBA (mg  L−1) Kin (mg  L−1) BA (mg  L−1) Kin (mg  L−1)

0 0 2.06 ± 0.24e 1,5 4 1.2 ± 0.42e

0,5 0 2.36 ± 0.92e 2 4 1.14 ± 0.38e

1 0 36.27 ± 6.36a 0 6 1.75 ± 0.35e

1,5 0 17.46 ± 3.69c 0,5 6 2.07 ± 0.27e

2 0 26.75 ± 5.83b 1 6 1.13 ± 0.35e

0 2 1.93 ± 0.27e 1,5 6 1.22 ± 0.44e

0,5 2 8.79 ± 2.91d 2 6 1.67 ± 0.49e

1 2 3.33 ± 1.67e 0 8 1.88 ± 0.33e

1,5 2 7.36 ± 1.57d 0,5 8 1.10 ± 0.32e

2 2 1.58 ± 0.51e 1 8 0.71 ± 0.49e

0 4 1.92 ± 0.28e 1,5 8 2.08 ± 0.28e

0,5 4 1.93 ± 0.26e 2 8 1.85 ± 0.38e

1 4 1.11 ± 0.33e

Fig. 3 Root formation in Stevia Rebaudiana tissue culture 
after 10 weeks of culture. Root (blue arrows) derived from explant 
treated in MS 0 (A); MS with 0.5 mg  L−1 BA (B). (White bar = 0.5 cm)
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from G2 to mitosis. In addition, cytokinin also regu-
lates the plant growth-related protein synthesis needed 
for mitosis [38].

The application of cytokinin in this study apparently 
inhibit root formation. We noticed that no root initia-
tion appeared in the explants treated with cytokinin, 
both Kin and BA. Nevertheless, we observed low num-
bers of the root has been initially formed in explants 
grown in zero Kin and BA (Additional file 1: Table S1). 
Our data consistent with the previous study stated that 
root growth reduction arose when plants received cyto-
kinin application in Arabidopsis thaliana [39]. Exog-
enous cytokinin resulted in a reduction of meristem 
size in root apical meristem [40]. Other studies also 
reported that auxin and cytokinin demonstrated an 
antagonistic effect on root formation [41]. Auxin func-
tions in promoting lateral root formation, while cyto-
kinin appears to inhibit it [42, 43].

In summary, our findings suggest that nodal segment of 
S. rebaudiana served as potential explant to shoot micro-
propagate the plant. In addition, we noticed that type 
and concentration of the cytokinin influence shoot pro-
liferation of the plant, where benzyl adenine at 1 mg  L−1 
served as optimum concentration. Further studies should 
be conducted to induce root formation of the plants for 
providing a complete cycle of in  vitro propagation of S. 
rebaudiana. In this case, auxin-supplemented media 
might potentially increase the number of roots. Alto-
gether, our findings might serve as an alternative method 
to conserve and proliferate Indonesian stevia genotype.
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