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Introduction
K. pneumoniae is a clinically significant gram-negative 
pathogen known to cause various infections in hospital 
and community settings [1]. K. pneumoniae develops 
carbapenem resistance, mainly through the production 
of carbapenemases along with other mechanisms, such 
as outer membrane impermeability and efflux pumps 
[2]. The most clinically significant carbapenemases 
in K. pneumoniae are classified into Ambler class A 
β-lactamases (encoded by blaKPC), class B metallo-β-
lactamases (MBLs) (encoded by blaNDM−1 and blaVIM), 
and class D β-lactamases (encoded by blaOXA−48) [3, 4]. 
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Abstract
Objective Carbapenemase production and biofilm formation in K. pneumoniae are crucial factors influencing 
the pathogenicity and antibiotic resistance of this bacterium. This study investigated the interplay between 
carbapenemase production and biofilm formation in K. pneumoniae clinical isolates.

Results The distribution of biofilm-forming ability significantly differed between carbapenemase-producing 
(CP-Kp) (n = 52) isolates and carbapenemase-nonproducing (CN-Kp) isolates (n = 37), suggesting a potential link 
between carbapenemase production and biofilm formation. All the blaNDM-1-harbouring isolates demonstrated 
biofilm formation, with varying levels classified as strong (33.33%), moderate (22.22%), or weak (44.45%). 
blaNDM-1 and blaKPC-coharbouring isolates did not exhibit strong or moderate biofilm formation. blaNDM-1 and 
blaOXA-48-coharbouring isolates were predominantly moderate (48.65%), followed by weak (32.43%), with none 
showing strong biofilm production. These findings suggest a correlation between the presence of carbapenemases 
and biofilm-forming ability; however, the heterogeneity in biofilm-forming abilities associated with different 
carbapenemase types and the absence of strong biofilm producers in the detected carbapenemase combinations 
prompt a closer look at the complex regulatory mechanisms governing biofilm formation in CP-Kp isolates.
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The emergence and spread of carbapenemase-produc-
ing K. pneumoniae (CP-Kp) strains have posed a serious 
threat to public health and continue to occur at alarming 
rates [5] due to their extensive antibiotic resistance [6], 
including resistance to carbapenem antibiotics, which are 
considered the last resort for the treatment of infections 
caused by multidrug-resistant (MDR) K. pneumoniae [7].

K. pneumoniae has the ability to produce virulence fac-
tors that play a role in its pathogenesis, including the cru-
cial virulence trait of biofilm formation. The biofilm is a 
complex matrix that frequently consists of a dense matrix 
of proteins, polysaccharides, and DNA [8, 9], within 
which bacteria are highly resistant to antibiotics and host 
immune responses [10], making it challenging to eradi-
cate. Moreover, biofilms of K. pneumoniae that develop 
on medical devices such as catheters and endotracheal 
tubes pose a substantial risk of infection for patients who 
are catheterized [11].

The development of antibiotic resistance is often inter-
twined with infection, highlighting its close associa-
tion with virulence. This connection becomes especially 
apparent in the cases of microorganisms capable of pro-
ducing biofilms [12]. Consequently, both the formation of 
biofilms and the production of carbapenemases contrib-
ute to heightened levels of antibiotic resistance. The aim 
of this study was to investigate the correlation between 
carbapenemase production and biofilm formation in K. 
pneumoniae clinical isolates.

Methods
Bacterial strains
Eighty-nine K. pneumoniae clinical isolates were 
included in this study (52 CP-Kp and 37 CN-Kp) from 
different clinical sources: urine (n = 38), blood (n = 19), 
wound (n = 9), sputum (n = 6), pus (n = 5) and other 
(n = 12), collected between March 2021 and January 
2022 from Egypt Air Hospital in Cairo, Egypt. Identifica-
tion of the isolates was carried out using matrix-assisted 

laser desorption/ionization time-of-flight mass spec-
trometry (MALDITOF/MS, SAI, UK) with score val-
ues ranging from 0.82 to 0.87, as per the manufacturer’s 
recommendations.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was employed by 
the disk diffusion technique using Mueller-Hinton 
agar (Oxoid, Thermo Fisher Scientific), following the 
guidelines established by the Clinical and Laboratory 
Standards Institute (CLSI) [13]. Imipenem (10  µg), 
meropenem (10  µg), and ertapenem (10  µg) (Oxoid, 
Thermo Fisher Scientific) were tested. E. coli ATCC 
25922 was used as the control strain. Interpretation of 
zones of inhibition was performed according to CLSI 
guidelines [14]. The inclusion criterion for the CN-Kp 
group was based on susceptibility, which was defined as 
having phenotypes sensitive to all tested carbapenems.

Phenotypic detection of carbapenemases
Carbapenemase-positive isolates were detected using the 
modified carbapenem inactivation method (mCIM) in 
accordance with the CLSI guidelines [14].

DNA extraction
To obtain crude DNA, 2 colonies were lysed in 500 µL of 
sterile distilled water at 100  °C for 10  min, followed by 
centrifugation. The supernatant was stored at − 80 °C for 
subsequent PCR assays. The concentration and purity of 
the DNA extract were detected using a NanoDrop spec-
trophotometer at wavelengths of 260 and 280 nm.

Detection of resistance genes by PCR
The carbapenemase-encoding genes blaIMP, blaVIM, 
blaKPC, blaNDM-1, blaSPM, and blaOXA-48 were amplified as 
follows: One multiplex PCR for the detection of blaKPC, 
blaNDM-1, and blaOXA-48 and three uniplex PCRs for the 
detection of blaIMP, blaVIM, and blaSPM were carried out 
in a 25 µL volume using COSMO PCR RED master mix 
(Willowfort, Birmingham, England). Primers (Invitrogen®, 
Thermo Fisher Scientific Inc., MA, USA) sequences and 
sizes are listed in Table 1, and the PCR conditions were 
as follows: For the multiplex PCR, 10 min at 94 °C and 30 
cycles of amplification consisting of 30 s at 94 °C, 40 s at 
52 °C, and 50 s at 72 °C were used, with 5 min at 72 °C for 
the final extension. For the three uniplex PCRs, 10 min at 
94 °C and 30 cycles of amplification consisting of 30 s at 
94 °C, 40 s at 55 °C, and 50 s at 72 °C, with 5 min at 72 °C 
for the final extension. A control without a template was 
included. The amplicons were separated by electropho-
resis on a 2% (w/v) agarose gel containing ethidium bro-
mide (0.5  µg/ml) using Thermo Scientific™ GeneRuler™ 
100  bp DNA Ladder (Thermo Fisher Scientific Baltics 
UAB, Lithuania). Prior to their use in the multiplex PCR 

Table 1 Primers used for detection of carbapenemase genes
Gene Primer DNA sequence Amplicon 

size (bp)
Ref-
er-
ence

blaNDM−1 F-5’ G G T T T G G C G A T C T G G T T T T C 3’
R-5’ C G G A A T G G C T C A T C A C G A T C 3’

621 bp  [15]

blaKPC F-5’ C G T C T A G T T C T G C T G T C T T G 3’
R-5’CTTGTCATCCTTGTTAGGCG3’

798 bp  [15]

blaOXA−48 F-5’GCGTGGTTAAGGATGAACA3’
R-5’CATCAAGTTCAACCCAACCG3’

438 bp  [15]

blaIMP F-5’GGAATAGAGTGGCTTAAYTCTC3’
R-5’GGTTTAAYAAAACAACCACC3’

232 bp  [16]

blaSPM F-5’AAAATCTGGGTACGCAAACG3’
R-5’ACATTATCCGCTGGAACAGG3’

271 bp  [16]

blaVIM F-5’GATGGTGTTTGGTCGCATA3’
R-5’CGAATGCGCAGCACCAG3’

390 bp  [16]
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assay, the primer pairs were individually tested to con-
firm their functionality and specificity.

Biofilm assay
The microtiter plate (96-well plate) assay was used to 
study biofilm formation, as described elsewhere [17]. The 
bacterial isolates were grown overnight at 37 ℃, and the 
bacterial suspension turbidity was adjusted to match the 
OD of a 0.5 McFarland standard in saline using a spec-
trophotometer (GeneQuant, Biochrom Ltd., England). 
Twenty µL aliquots of each suspension were added to the 
wells of polystyrene microtiter plates containing 180 µL 
TSB supplemented with 1% glucose, with three wells per 
bacterial isolate. The plate was incubated for 48 h under 
static conditions, and the broth was gently aspirated. Each 
well was washed thrice with 300 µL of PBS at pH 7.2, and 
the adherent biofilm layer in each well was stained with 
150 µL of 0.5% (w/v) crystal violet solution for 14 min at 
room temperature. Crystal violet was removed using ster-
ile distilled water, and the plates were air-dried. The bio-
film was solubilized by adding 150 µL of 95% ethanol. The 
OD of each well was measured at 570 nm using a microti-
ter plate reader (Synergy 2, BioTek, WI, USA). Sterile 
broth was used as a negative control. Each assay was 
performed in triplicate on three occasions. The results 
were interpreted according to the following criteria: no 
biofilm production (ODsample<ODcontrol), weak biofilm 
production (ODcontrol<ODsample<2xODcontrol), moderate 
biofilm production (2xODcontrol < ODsample<4xODcontrol), 

and strong biofilm production (4xODcontrol < ODsample) 
[17].

Data analysis
Chi-square tests (Fisher’s exact test where appropriate) 
were performed using GraphPad Prism version 5.01 for 
Windows and GraphPad InStat version 3.05 (GraphPad 
Software, San Diego, California, USA) to assess the rela-
tionship between carbapenemase production and bio-
film formation. In this context, any correlation analyses 
that resulted in p values less than 0.05 were statistically 
significant.

Results
Characterization of isolates
Among the CP-Kp isolates, 37 exhibited simultaneous 
resistance to all three tested carbapenems. Specifically, 
all CP-Kp isolates were resistant to ertapenem, with 
the exception of two isolates that showed intermediate 
resistance. Out of 52 CP-Kp isolates, 46 were resistant 
to meropenem and 37 to imipenem, with intermediate 
resistance in four and five isolates, respectively. In con-
trast, 10 isolates were found to be sensitive to imipenem, 
and two isolates were sensitive to meropenem.

Prevalence and distribution of carbapenemase genes
All CR-Kp isolates that phenotypically expressed car-
bapenemase, as determined by the mCIM, were positive 
for one or more carbapenemase genes, according to PCR 
results (Fig. 1). Out of the 52 CP-Kp isolates, the blaNDM-1 

Fig. 1 Carbapenemase gene amplification profile in K. pneumoniae using multiplex PCR. The PCR products were separated on a 2% agarose gel. A mo-
lecular size marker (in bp, measurements on the left, middle, and right) was used, featuring a reference band at 500 bp. No template control (NTC) was 
included. The specific lanes correspond to the following amplified genes: Lane 1 and 3 for blaOXA-48 (438 bp); Lane 2, 9, 11, 14 and 16 for blaNDM-1 (621 bp); 
Lane 5 for blaNDM-1 and blaKPC (621 and 798 bp); and Lane 4, 6, 7, 8, 10, 12, 13 and 15 for blaNDM-1 and blaOXA-48 (621 bp and 438 bp)
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gene was detected in 49 (94.23%), and blaOXA-48 was 
detected in 40 (76.92%) isolates. None of the carbapen-
emase genes tested (blaVIM,blaIMP, and blaSPM) were 
detected. Out of the 52 carbapenemase gene-carrying 
isolates, 37 (71.15%) coharboured blaNDM-1 and blaOXA-48, 
while 3 (5.77%) isolates carried both blaNDM-1 and blaKPC. 
None of the isolates were found to harbour blaKPC only.

Evaluation of biofilm formation
In total, 63 out of 89 (70.79%) isolates were identified as 
biofilm producers, and 26 isolates (29.21%) were biofilm 
non-producers from different clinical sources. The dis-
tribution of biofilm-forming ability varied significantly 
(p = 0.0037; chi-square test) between the CP-Kp and 
CN-Kp isolates. For the CP-Kp isolates, 42.31% exhib-
ited moderate biofilm production, 34.62% were weak 
producers, 5.77% were strong producers, and 17.31% 
were non-producers. Among the CN-Kp isolates, 37.84% 
were weak producers, 10.81% were moderate produc-
ers, 5.41% were strong producers, and 45.95% were non-
producers (see Table  2 and Supplementary Fig.  1). The 
biofilm-forming abilities of K. pneumoniae isolates were 
assessed based on various carbapenemase types. Among 
the blaNDM-1-harbouring isolates, 33.33% exhibited 
strong biofilm formation, 22.22% had moderate biofilm 
formation, and 44.45% had weak biofilm formation. None 
of the isolates were classified as biofilm non-producers. 
In blaNDM-1 and blaKPC-coharbouring isolates, 66.67% 
were weak biofilm producers, and 33.33% were biofilm 
non-producers. In blaNDM-1 and blaOXA-48-coharbouring 
isolates, no strong biofilm producers were observed. 
Instead, 48.65% were moderate producers, 32.43% were 
weak producers, and 18.92% were non-biofilm producers. 
In the blaOXA-48 harbouring isolates, 66.67% were classi-
fied as moderate biofilm producers, and 33.33% were bio-
film non-producers. (see Supplementary Table 1).

Discussion
Over the past few years, there has been a notable increase 
in the occurrence of CP-Kp in hospitals worldwide. In 
this study, 52 CP-Kp isolates were included. blaNDM-1 
was the most predominant (94.23%) carbapenemase-
encoding gene detected, followed by blaOXA-48 (76.92%). 
This finding is in line with previously reported data that 

found that 35 out of 37 (94.59%) of their carbapenemase-
producing isolates harboured blaNDM-1 and 26 (70.27%) 
harboured blaOXA-48 [18]. In contrast to our findings, 
another study reported that blaOXA-48 (25/62, 40.32%) 
was the most predominant and that blaNDM-1 had only a 
minor incidence (6/62, 9.68%) [19]. When a carbapene-
mase-producing isolate carries multiple carbapenemases, 
it becomes highly resistant to treatment as it increases 
the range of hydrolytic activity, making it challeng-
ing to target with antibiotics [20]. Here, we found that 
the coexistence of blaNDM-1 and blaOXA-48 accounted for 
71.15% of the CP-Kp isolates. This high occurrence is 
consistent with previous work, which reported a preva-
lence of 64.86% (24 out of 37 isolates) of tested CP-Kp 
isolates [18]. In contrast, a previous study conducted in 
the ICUs of Zagazig University Hospitals reported that 
only 5.71% (6 out of 105 isolates) of tested CP-Kp iso-
lates coharboured blaNDM-1 and blaOXA-48 [21]. In this 
study, we found a low incidence (5.77%) of CP-Kp iso-
lates that coharbored blaNDM-1 and blaKPC. These find-
ings are in accordance with previous studies conducted 
in Egypt, which reported a low incidence (11.29%) (7 out 
of 62 isolates) [19] or absence [18] of the blaKPC gene in 
their CP-Kp isolates. This suggests that KPC is less preva-
lent in our geographic area. However, opposite findings 
were reported by others who found a higher prevalence 
of blaKPC at 17.14% (18 out of 105) in the tested CP-Kp 
[21]. Here, we could not detect the presence of blaIMP or 
blaVIM in any of our CP-Kp isolates. These findings are 
in line with other studies conducted in Egypt and other 
countries that reported the absence of these genes in 
their CP-Kp isolates [18, 21]. However, in contrast to our 
findings, some studies reported a higher prevalence [19]. 
Here, we could not detect the presence of blaSPM in any 
isolate.

One of the important virulence factors of K. pneu-
moniae is its ability to form biofilms [22]. The current 
study revealed that the majority of the K. pneumoniae 
isolates were biofilm producers (70.79%), regardless of 
their clinical source. This finding is consistent with that 
of a study conducted in 2023 [23]. However, a previous 
study reported a greater propensity for biofilm forma-
tion, with 91.2% of the isolates forming biofilms [24]. In 
this study, there was a significant difference in biofilm-
forming ability between CP-Kp and CN-Kp (p = 0.0037; 
chi-square test). These findings corroborate those of the 
2022 study on reference strains of K. pneumoniae [25]. 
Notably, a smaller percentage of CP-Kp isolates (17.31%) 
were biofilm non-producers compared to CN-Kp iso-
lates (45.95%) (p = 0.0046; Fisher’s exact test). Therefore, 
the presence of carbapenem resistance, indicated by the 
presence of carbapenemases, suggested a greater over-
all propensity for biofilm formation in K. pneumoniae. 
This could be attributed to several factors, such as the 

Table 2 Comparison of biofilm-forming ability between 
carbapenemase-producing (CP-Kp) and nonproducing Klebsiella 
pneumoniae (CN-Kp) isolates (Fisher’s exact test)
Biofilm 
formation

CP-Kp, n = 52 
(%)

CN-Kp, 
n = 37 (%)

Total, n = 89 
(%)

p 
value

No biofilm 9 (17.31) 17 (45.95) 26 (29.21) 0.0046
Weak 18 (34.62) 14 (37.84) 32 (35.96) 0.8243
Moderate 22 (42.31) 4 (10.81) 26 (29.21) 0.0018
Strong 3 (5.77) 2 (5.41) 5 (5.62) 1.0000
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interplay of carbapenemases with regulatory pathways 
governing biofilm formation, which may lead to the 
upregulation of key biofilm-associated genes in CP-Kp 
isolates [25]. Additionally, the environmental stress 
induced by the presence of carbapenemases might sup-
port the formation of biofilms as a survival strategy in 
CP-Kp isolates. Despite the suggested association, it is 
noteworthy that there is a subset of CP-Kp isolates that 
demonstrated an inability to produce biofilms, sug-
gesting that carbapenem resistance in K. pneumoniae 
alone does not guarantee biofilm formation and is likely 
multifactorial.

CP-Kp isolates, despite being primarily biofilm pro-
ducers, display varied biofilm-forming capabilities. The 
strong biofilm producers of the CP-Kp group were exclu-
sively found among the isolates harbouring only blaNDM-1, 
consistent with the findings of a previous study [25]. 
Notably, the blaNDM-1 and blaKPC-coharbouring isolates 
did not exhibit strong or moderate biofilm formation, 
and one such isolate was a biofilm non-producer. This 
finding aligns with that of a prior study [23]. In contrast, 
the majority of blaNDM-1 and blaOXA-48coharbouring iso-
lates exhibited a moderate biofilm phenotype (48.65%), 
followed by a weak biofilm phenotype (32.43%), while 
18.92% of the isolates exhibited no biofilm formation. No 
strong biofilm producers were identified.

Most of the literature indicated a higher prevalence of 
strong biofilm producers among β-lactamase produc-
ers [26, 27]. In the present study, unexpectedly, no cor-
relation was observed between the formation of strong 
biofilms and the presence of detected carbapenemases. 
Additionally, none of the isolates detected with more 
than one resistance gene exhibited strong biofilm for-
mation, contrary to the findings of a recent study [23]. 
Conversely, another study revealed a notable association 
between the prevalence of the blaVIM1 and blaIMP1 genes 
and the formation of strong biofilms [24]. These findings 
suggest that certain carbapenemase subtypes or combi-
nations may enhance biofilm formation, while others may 
have a more modest impact or even a negative influence. 
However, other factors, such as quorum sensing [25], the 
HMV phenotype [28], high adhesion capacity, and cell 
death, have been reported to have significant impacts on 
the formation of strong biofilms on K. pneumoniae iso-
lates [29].

In conclusion, this study suggested a link between car-
bapenemases and biofilm formation, but the diverse bio-
film-forming capabilities of various carbapenemase types 
and the lack of strong producers in the detected combi-
nations emphasise the need for a deeper understanding 
of the intricate regulatory mechanisms governing biofilm 
formation in CP-Kp isolates.

Limitations
One of the limitations of this study is the lack of further 
carbapenemase subtyping and correlation with biofilm 
phenotypes, which could provide insights into the vary-
ing effects of specific carbapenemases or combinations 
on biofilm formation. In addition, performing functional 
assays, such as gene knockout experiments or overex-
pression studies, can validate the role of specific genetic 
elements in biofilm formation.
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