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Abstract 

Objective Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for qual-
ity control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate 
the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the par-
ticipants, to identify possible sample mix-ups.

Results Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, 
when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 incon-
sistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The 
genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping 
arrays. It was determined that discrepancies resulted from clerical errors (49.09%), samples from transgender partici-
pants (3.64%) and stem cell or bone marrow transplant patients (7.27%) along with undetermined sample mix-ups 
(40%) for which sample swaps occurred prior to arrival at genome centers, however the exact cause of the events 
at the sampling sites resulting in the mix-ups were not able to be determined.
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Introduction
The implementation of next-generation sequencing 
(NGS) technologies in clinical laboratories [1–4] typically 
involves three phases: (i) the pre-analytic phase including 
sample collection, DNA extraction and shipment; (ii) 
the analytic phase of NGS library preparation, DNA 
sequencing, bioinformatics analysis; and (iii) a post-
analytic phase including clinical report generation and 
delivery. Each phase is inherently subject to sample 
tracking and identification errors, with prior reports 
of more than 46% of errors occurring during the pre-
analytical phase, caused by inappropriate test requests, 
order entry errors, patient misidentification, and labelling 
errors [5]. Validation and tracking of sample identity 
therefore is a basic and important aspect of effective 
clinical NGS testing.

DNA-based methods for sample tracking include 
genotyping of short tandem repeats (STRs) or single 
nucleotide polymorphisms (SNPs) [6–8]. STRs are 
generally located in non-coding regions, prone to high 
sequencing error rates, and often require longer than 
typical sequencing read lengths to precisely define the 
number of repeats, limiting their application. In contrast, 
SNPs are ubiquitous in the genome and simple to assay 
[9–11]. In this study, a 96-SNP panel was used to track 
samples through the clinical NGS workflow in the 
National Institute of Health’s Electronic Medical Records 
and Genomics Phase III (eMERGE) program [12]. The 
network linked together 11 sample collection sites and 2 
clinical genetic testing laboratories, the Human Genome 
Sequencing Center Clinical Laboratory at Baylor College 
of Medicine (BCM-HGSC-CL) and the Mass General 
Brigham Laboratory for Molecular Medicine (LMM) 
in partnership with the Clinical Research Sequencing 
Platform (CRSP) at the Broad Institute of MIT and 
Harvard. A total of 25,015 clinical DNA samples were 
processed. The 96-SNP panel-based procedure provided 
a robust method for sample tracking in the clinical NGS 
workflow and showed that the testing of sex can provide 
a valuable quality control tool.

Methods
Fluidigm SNP genotyping assay
Two clinical laboratories harmonized methods for 
the program [12] and utilized a 96-SNP panel but 
incorporated different selected SNPs to track samples and 
determine ancestry. Each 96-SNP panel contained one 
subset of SNPs on the sex-chromosomes. The autosome 
SNPs are within the target region of the capture design 
used in the eMERGE program (Additional files 1, 2) [12]. 
Assays were performed according to the manufacturer’s 
recommendations.

The BCM-HGSC-CL’s 96-SNP panel replaced 19 
of the original Fluidigm SNPtrace 96 sites to match 
genomic regions specifically targeted in eMERGE III. 
The remaining sites included 3 SNPs on Chromosome X 
and 3 on Chromosome Y [13, 14]. At the Broad Institute, 
the chosen SNPs included 95 autosomal SNPs and 1 
sex determining assay locus, covering the AMELX and 
AMELY gene (AMG_3B) with a sex-specific 6 base-pair 
insertion/deletion.

Illumina Infinium HumanCoreExome SNP array assays 
and NGS
The HumanCoreExome v1-3 BeadChips contain 500K 
variant sites, including more than 12,900 located on 
the X chromosome, that are informative for genetic sex 
prediction. Infinium SNP array assay were performed 
with 200  ng genomic DNA according to manufacturer’s 
instructions. DNA sequencing for the eMERGE phase III 
program has been described previously [12].

Results
As a first step towards assessing sample swaps during the 
analytic phase in NGS testing, we tested the concordance 
between data generated from the 96-SNP panel geno-
typing and the DNA sequence data at each of the two 
Genome Characterization Centers. The BCM-HGSC-
CL and LMM/Broad laboratories utilized the same ana-
lytical platform foundation, employing slightly different 
SNP sites for the assays, but generally similar workflows 
(Fig. 1). The average SNP call rates were 97.3% and 97.5% 
for the 25,015 samples processed at the BCM-HGSC-CL 
and the LMM/Broad, respectively. No sample swaps were 
identified during the analytic NGS testing phase. Next, 
we compared the 96-SNP panel genotype-based sex to 
reported sex at the time of sample accessioning, where a 
total of 110 (0.44%) non-concordant cases from two test-
ing laboratories were identified. The two testing labora-
tories utilized slightly different workflows to technically 
validate the sex discrepancies.

At the BCM-HGSC-CL, of the 14,515 samples pro-
cessed, 73 samples with sex discrepancies were re-tested 
with the same 96-SNP panel. Identical results were 
obtained for 70 of the re-tested samples (Table 1). For the 
remaining 3 cases, where the sex provided on test requi-
sition was male, non-concordant or ambiguous data were 
observed between the initial and the repeated assays. 
For two of these samples, the automated software calls 
from one of each duplicate assays indicated that the DNA 
source was from individuals with Klinefelter Syndrome 
(47, XXY). However, further review of the SNP scat-
ter plots for autosome and sex SNPs indicated that the 
inconsistent sex calls most likely resulted from sample 
contamination involving a mixture of male and female 
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DNAs (Fig. 2). The third sample was called as female with 
lower confidence initially. In the repeated assay, one of 
the X SNPs failed to call due to localization in between 
clusters in plot analysis. This is most likely due to the 
female sample mixed up with some DNA sample from 
another female.

Next, Illumina HumanCore Exome Arrays were 
utilized as an orthogonal high-density hybridization 
genotyping assay to further test 71 of the 73 samples 
with sex inconsistencies except two samples which had 
insufficient genomic DNA (Table 1). HumanCore Exome 
Array results confirmed 96-SNP panel genotyping sex 
data, including the suspected two contaminated female 
samples with additional male or other female DNA.

At the Broad/LMM, the reported sex from the 
test requisition was compared with the genetic sex 
determined by both the Fludigm genotyping assay and 
the data from the eMERGE III sequencing panel. Of 
the 10,500 samples processed, 151 were initially either 
identified as discordant or had no sex determination. For 
95 samples, the Fluidigm assay data could not return a 
sex determination, however the sequencing sex matched 
the reported sex for each and no further action was taken. 
For 19 of the remaining 56 samples, the sequencing and 
reported sex were concordant, but did not match the 
genotyping determined sex. Further review of these 19 
samples showed that the genotyping assay calls were 
generally borderline or low confidence calls, suggesting 
sub-optimal performance of the single sex determining 

SNP as the reason for the data discrepancy, rather than 
either a sex reporting error at accession or sample mix-up 
in the testing laboratory. The remaining 37 samples had 
highly confident sex determination calls from both the 
SNP assay and the subsequent DNA sequencing that 
were concordant, but did not match the site reported sex 
(Table 1).

Internal tracking showed that none of the 110 
confidently identified sex discrepant samples occur 
within the clinical DNA sequencing laboratories and 
that most errors were likely introduced prior to shipment 
of samples. Sampling sites identified handling errors 
from test requisitions, sample extraction, and sample 
handling procedures for 54 cases. Forty-six of these had 
information that was incorrectly or incompletely entered 
on the test requisitions and were resolved by examination 
of other records. In 6 other cases, it was determined that 
incorrect samples had been shipped from the sampling 
sites to the genome centers. Biological explanations 
for the discrepant tracking data were identified for 
an additional 12 cases. In 4 of these 12 cases, further 
examination of records revealed that the samples were 
provided by transgender participants. In addition, 8 
sex discrepant samples were determined to be from 
individuals who had received stem cell or bone marrow 
transplants. Causes of the sample genetic vs. reported sex 
discrepancy are listed in Table 2.

Where possible, the information on test requisition 
forms was amended and correct clinical reports were 

Fig. 1 eMERGE sample processing workflow. Steps indicating where aliquots of DNA are taken from samples that are presented to the Clinical 
DNA Sequencing Laboratory for accession, to test via the Fluidigm 96-SNP panel assay. Data from the Fluidigm 96-SNP panel assay are compared 
with DNA sequence data from the DNA sequencing pipeline as a quality control step, ahead of the Automated Clinical Reporting step
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issued for 45 cases processed at the BCM-HGSC-CL, or 
the incorrect samples were replaced and re-processed. 
Twelve cases sequenced at the BCM-HGSC-CL with 
sample mix-ups due to unknown causes were withdrawn 
from the study. Similarly, 32 unsolved cases sequenced at 
LMM/Broad were either withdrawn or remained under 
investigation.

Discussion
To identify sample swaps during the processing of 25,015 
clinical samples in the NIH eMERGE III program, two 
clinical DNA sequencing laboratories first utilized a 
Fluidigm-based 96-SNP panel assay to track internal pro-
cesses. These analyses indicated no sample swaps had 
occurred in the time interval between sample arrival at 
the testing laboratories and the delivery of the final DNA 
sequencing data. In contrast, when the test was expanded 
to predict the concordance between the self-reported sex 
of participants at the time of their initial enrollment, with 

a predicted sex-by-genotype, there were 110 discord-
ant samples. A battery of follow-up tests indicated that 
these likely arose before the materials were received at 
the clinical DNA sequencing laboratories. The bases of 
the sample tracking errors at sample collection sites were 
determined in 66 of the 110 cases (60%), while leaving the 
remaining 44 cases unsolved and under investigation. Of 
these 66 resolved cases, the largest source for the initial 
discordance occurring in 54 cases (81%) arose from cleri-
cal or shipping errors. The remaining 12 cases (18% of the 
66 solved) had biological underpinnings that explained 
the discordant results, as 8 were due to stem cell/bone 
marrow transplants while 4 were from transgender indi-
viduals. Future sample collecting procedures could be 
modified by including more informative test requisition 
options to ensure that participants are invited to note 
these types of events at the time of collection, so that this 
information is available for quality control.

Table 1 Comparison of genetic sex determined in various assays and reported sex on test requisition

a Insufficient gDNA for Illumina array
b Sex not reported on requisition form
c Sex not called in assay; NA not available

Sequencing site Total Sample 
providing 
site

Sex on test 
requisition

Sex from 1st 
Fluidigm array

Sex from 2nd 
Fluidigm array

Sex from 
Illumina array

Sex from 
sequencing 
data

Sample 
number

BCM-HGSC-CL 73 Site 1 Male Female Female Female – 5

Female Male Male Male – 5

Site 2 Male Female Female Female – 13

Male Female Klinefelter Female – 1

Female Male Male Male – 7

Site 3 Male Female Female Female – 3

Female Male Male Male – 3

Female Male Male NAa – 1

Site 4 Male Female Female Female – 7

Female Male Male Male – 9

Male Klinefelter Female NAa – 1

Site 5 Male Female Female Female – 6

Male Female No Call Female – 1

Female Male Male Male – 4

Site 6 Male Female Female Female – 4

Female Male Male Male – 3

LMM/broad 37 Site 7 NAb Female – – Female 1

Female NAc – – Male 1

Male Female – – Female 16

Female Male – – Male 13

Site 8 Male Female – – Female 1

Site 9 Male Female – – Female 1

Female Male – – Male 2

Site 10 Male Female – – Female 1

Female Male – – Male 1
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The 96-SNP panel has proven value for precise sample 
tracking [15]. In general, 20 informative SNP loci are suf-
ficient for unique individual sample identification [16, 
17]. Other SNP panels have been used for identification 
of human samples [9, 18, 19]. A low-density QC geno-
typing array launched by Illumina which includes 15,949 
markers has been utilized in genomic-based clinical 
diagnostics [20]. Our studies showed that these two dif-
ferent SNP platforms exhibited consistent results when 
applied for sex identification. In comparison to the use 
of the Illumina Infinium array platform, the workflow 
for the 96-SNP panel assay is faster (1-day workflow vs 
3-day workflow) and more cost-effective (chip price for 
SNPtrace is about 15% of HumanCoreExome Array per 

sample). However, the Illumina Infinium array platform 
provides more information on linkage analysis, HLA 
haplotyping, ethnicity determination and other genetic 
information in addition to fingerprinting and thus may be 
preferred in some scenarios. It may also take into account 
the sex prediction accuracy of the two methods, the error 
rate, albeit low, as well as the cost of re-testing that may 
be necessary in some cases due to low data quality. Other 
commercial systems are also available to substitute for 
the platforms described here if they provide cost-effec-
tive and precise data with similar qualities.

This level of tracking error is unacceptable for ongoing 
clinical practice, but the study does not represent the 
levels that will be expected in further clinical programs. 

Fig. 2 Scatter plot analysis of 96-SNP panel reveals sample contamination. Scatter plot analysis from vendor software, showing a normal DNA male 
sample (A) or a contaminated sample containing a mixture of male and female DNAs (B). Panels 1–3 SNPs on X chromosome; panels 4–6 SNPs 
on Y chromosome; panels 7–9 autosomal SNPs. Each panel shows the data from a single SNP, as compared to clusters from all other SNPs. Clusters 
are shown as either homozygous (red or green), or heterozygous (blue) positions. In panels B2, 3, 7–9 single SNPS are represented as outside the 
expected (arrows) resulting in erroneous or ‘no-call’ from the software

Table 2 Causes of sample sex discrepancy

Sex discrepant categories BCM-HGSC-CL samples LMM/broad samples Total

Sampling site errors

 Incorrect/incomplete information on test requisition 45 1 46

 Error during DNA extraction 0 2 2

 Incorrect sample shipped 6 0 6

Transgender 2 2 4

Stem cell/bone marrow transplant recipient 8 0 8

Not solved/under investigation 12 32 44

Total sex discrepancies 73 37 110
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At least one laboratory declared their initial sample 
enrollments as ‘research samples’ and thus committed 
to later repeat assays under a fully compliant protocol, 
to verify any findings that may impact care. Others were 
able to quickly identify points of error and rectify their 
protocols to ensure faithful future sample handling. All 
sites committed to rechecking of records and reconciling 
actionable findings with orthogonal data, including 
family histories and biochemical tests, before returning 
results. The ‘lessons learned’ from these analyses ensure 
that a repeat of the same program would likely minimize 
any similar errors.

Limitations
While false positive rates are low for this application of 
SNP trace, false negative rates will be high. Here, the 
overall level of genetic and reported sex discordance of 
0.44% is likely an underestimate of the true error rate in 
this study, as the misclassification of genetic sex from 
a random sample swap would be expected to result in 
incorrect, erroneous assignment, only 50% of the time. 
The true ratio may be skewed by factors introducing a 
sex-bias in the direction of misclassification. This could 
be caused by skewed phenotypes of individuals with sex 
chromosome anomalies or that gender obfuscation may 
be socially driven in an unequal manner, depending on 
the gender identity of the individual. Overall, the rate 
is likely higher than the 0.44% identified here, but not 
anticipated to be higher than twice that level.
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