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Abstract
Background In the UK National Health Service (NHS), the patient’s vital signs are monitored and summarised into a 
National Early Warning Score (NEWS) score. A set of computer-aided risk scoring systems (CARSS) was developed and 
validated for predicting in-hospital mortality and sepsis in unplanned admission to hospital using NEWS and routine 
blood tests results. We sought to assess the accuracy of these models to predict the risk of COVID-19 in unplanned 
admissions during the first phase of the pandemic.

Methods Adult ( > = 18 years) non-elective admissions discharged (alive/deceased) between 11-March-2020 to 
13-June-2020 from two acute hospitals with an index NEWS electronically recorded within ± 24 h of admission. We 
identified COVID-19 admission based on ICD-10 code ‘U071’ which was determined by COVID-19 swab test results 
(hospital or community). We assessed the performance of CARSS (CARS_N, CARS_NB, CARM_N, CARM_NB) for 
predicting the risk of COVID-19 in terms of discrimination (c-statistic) and calibration (graphically).

Results The risk of in-hospital mortality following emergency medical admission was 8.4% (500/6444) and 9.6% 
(620/6444) had a diagnosis of COVID-19. For predicting COVID-19 admissions, the CARS_N model had the highest 
discrimination 0.73 (0.71 to 0.75) and calibration slope 0.81 (0.72 to 0.89) compared to other CARSS models: CARM_N 
(discrimination:0.68 (0.66 to 0.70) and calibration slope 0.47 (0.41 to 0.54)), CARM_NB (discrimination:0.68 (0.65 to 0.70) 
and calibration slope 0.37 (0.31 to 0.43)), and CARS_NB (discrimination:0.68 (0.66 to 0.70) and calibration slope 0.56 
(0.47 to 0.64)).

Conclusions The CARS_N model is reasonably accurate for predicting the risk of COVID-19. It may be clinically useful 
as an early warning system at the time of admission especially to triage large numbers of unplanned admissions 
because it requires no additional data collection and is readily automated.
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Introduction
The novel coronavirus SARS-CoV-2, which was declared 
as a pandemic on 11-March 2020, which produces the 
newly identified disease ‘COVID-19’ in patients with 
symptoms (Coronaviridae Study Group of the Interna-
tional Committee on Taxonomy of Viruses [1]), has chal-
lenged health care systems worldwide.

Patients with COVID-19 admitted to a hospital can 
develop severe disease with life-threatening respiratory 
and/or multi-organ failure [2, 3] with a high risk of mor-
tality. It is recommended that patients at risk of deterio-
ration are referred to critical care. The appropriate early 
assessment and management of patients with COVID-19 
are important in ensuring high-quality care [4, 5].

In the UK National Health Service (NHS), the patient’s 
vital signs are monitored and summarised into a National 
Early Warning Score (NEWS) [6]. NEWS is calculated 
from six physiological variables or vital signs—respira-
tion rate, oxygen saturation, temperature, systolic blood 
pressure, heart rate and level of consciousness (alert, 
voice, pain, unresponsive) and use of supplemental oxy-
gen. NEWS points are allocated according to clinical 
observations (see Table S1).

We have developed four automated, computer-
aided risk scores to predict the patient’s risk of mortal-
ity (CARM_N & CARM_NB) and sepsis (CARS_N & 
CARS_NB) following emergency medical admission to 
hospital [7–10]. The _N models use NEWS and the _NB 
models incorporate routine blood test results. We refer to 
this suite of risk equations as computer-aided risk scoring 
systems (CARSS).

Our aim in this study was to assess the accuracy of 
CARSS in predicting the risk of COVID-19 in unplanned 
admissions to a teaching hospital during the first phase 
of the novel coronavirus SARS CoV-2 (COVID-19) pan-
demic. We are not developing new risk prediction mod-
els, we are assessing the performance of existing models, 
re-purposed for COVID-19.

Methods
Setting & data
Our cohort of unplanned admissions is from two acute 
hospitals which are approximately 65  km apart in the 
Yorkshire & Humberside region of England—Scarbor-
ough hospital (n ∼ 300 beds) and York Hospital (YH) 

(n ∼ 700 beds), managed by York Teaching Hospitals NHS 
Foundation Trust. For this study, the two acute hospitals 
are combined into a single dataset and analysed collec-
tively. The hospitals have electronic NEWS scores and 
vital signs recording which is routinely collected as part 
of the patient’s process of care (see Table S1).

We considered all adult (age ≥ 18 years) emergency 
medical admissions (excluding ambulatory care area 
patients), discharged (alive/deceased) during 3 months 
(11 March 2020 to 13 June 2020), with electronic NEWS 
recorded within ± 24 h of admission. This on-admission 
NEWS score is referred to as the index NEWS.

For each emergency admission, we obtained a pseud-
onymised patient identifier, patient’s age (years), gender 
(male/female), discharge status (alive/dead), admission 
and discharge date and time, diagnoses codes based on 
the 10th revision of the International Statistical Classifi-
cation of Diseases (ICD-10) [11, 12], NEWS (including 
its subcomponents respiratory rate [breaths per minute], 
temperature [oC], systolic pressure [mmHg], pulse rate 
[beats per minute], oxygen saturation [percentage], oxy-
gen supplementation [yes/no], and alertness level [alert, 
voice, pain, unconscious] ) [6, 13], blood test results 
(albumin [g/L], creatinine [umol/L], haemoglobin [g/l], 
potassium [mmol/L], sodium [mmol/L], urea [mmol/L], 
and white cell count [109 cells/L]), and Acute Kidney 
Injury (AKI) score.

We had developed and externally validated four risk 
scores: (1) CARM_N for predicting in-hospital mortal-
ity based on NEWS [10]; (2) CARM_NB for predicting 
in-hospital mortality that incorporates routine blood 
test results [7]; CARS_N for predicting sepsis based on 
NEWS [9]; CARS_NB for predicting sepsis that incor-
porates routine blood test results [8] (see Table 1). These 
four equations are collectively known as computer-aided 
risk scoring systems (CARSS), calculated using index 
NEWS and blood test results. We excluded records 
where the index NEWS (or blood test results) was not 
within ± 24 h (± 96 h) or was missing/not recorded at all 
(see Table S2).

The ICD-10 code ‘U071’ was used to identify records 
with COVID-19. We searched primary and secondary 
ICD-10 codes for ‘U071’ for identifying COVID-19. We 
also linked positive laboratory results for COVID-19 
swabs to an automated diagnostic coding entry in the 
patient electronic health record.

Statistical analyses
We report discrimination and calibration statistics as 
performance measures for CARSS [14].

We determined the discrimination of CARSS using 
the concordance statistic (c-statistic) that gives the prob-
ability of randomly selected patients who experienced 
COVID-19 had a higher risk score than a Non-Covid-19 

Table 1 Four risk scores for predicting the risk of mortality and 
sepsis, known as computer-aided risk scoring systems (CARSS)
Computer-Aided Risk (CAR) 
score

NEWS data only (N) NEWS and 
Blood test 
results 
data (NB)

Mortality (M) CARM_N CARM_NB
Sepsis (S) CARS_N CARS_NB
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patient. For a binary outcome (COIVD-19/Non-
Covid-19), the c-statistic is the area under the Receiver 
Operating Characteristics (ROC) curve [15]. The ROC 
curve is a plot of the sensitivity, (true positive rate), ver-
sus 1-specificity, (false positive rate), for consecutive pre-
dicted risks. A c-statistic of 0.5 is no better than tossing 
a coin, whilst a perfect model has a c-statistic of 1. In 
general, values less than 0.7 are considered to show poor 
discrimination, values of 0.7 to 0.8 can be described as 
reasonable, and values above 0.8 suggest good discrimi-
nation [16].

Calibration measures a model’s ability to generate pre-
dictions that are on average close to the average observed 
outcome and can be readily seen on a scatter plot (y-axis 
observed risk, x-axis predicted risk). Perfect predictions 
should be on the 45° line. We internally validated and 
assessed the calibration for all the models using the boot-
strapping approach [17, 18]. The overall statistical perfor-
mance was assessed using the scaled Brier score which 
incorporates both discrimination and calibration [14]. 
The Brier score is the squared difference between actual 
outcomes and predicted risk of COVID-19, scaled by the 
maximum Brier score such that the scaled Brier score 
ranges from 0 to 100%. Higher values indicate superior 
models. The 95% confidence interval for the scaled Brier 
score was calculated using bootstrap approach [19].

We followed the STROBE guidelines to report the find-
ings [20]. All analyses were undertaken using R [21] and 
Stata [22]. The 95% confidence interval for the c-statistic 
was computed using DeLong’s method as implemented 
in the pROC library [23].

Results
Cohort description
There were 6480 discharges over 3 months. We excluded 
36 (0.6%) records because the index NEWS was not 
recorded within ± 24  h of the admission date/time or 
NEWS was missing or not recorded at all (see Table S2). 
We further excluded 1175 (18.1%) because absence of 
blood test results.

The prevalence of COVID-19 was 9.6% (620/6444) 
and of these 32% (199/620) deceased at discharge. The 
demographic, vital signs and outcome profiles of the 
COVID-19 versus non-COVID-19 admissions and dis-
charge deceased versus discharged alive are shown in 
Table  2 and Figure S1-S2. COVID-19 admissions were 
older (73.3 vs. 67.7, p < 0.001), more likely to be male 
(54.7% vs. 50.1%, p < 0.001), with higher index NEWS 
(4.0 vs. 2.5, p < 0.001). They also had longer hospital stay 
(7.3 days vs. 3.0 days, p < 0.001) and higher in-hospital 
mortality (32.1% vs. 5.8%, p < 0.001). The average CARSS 
(CARM_N, CARM_NB, CARS_N, CARS_NB) risk was 
generally higher for COVID-19 admissions and for those 
who were deceased at discharge.

Statistical modelling results
We assessed the four CARSS models (CARM_N, CARM_
NB, CARS_N, CARS_NB) performance according to dis-
crimination (c-statistic) and calibration (graphically) in 
predicting the risk of COVID-19 (see Table 3; Figs. 1 and 
2).

For predicting COVID-19 admissions, the CARS_N 
model performed better than others in terms of discrimi-
nation 0.73 (95%CI 0.71 to 0.75) and calibration slope 
0.81 (95%CI 0.72 to 0.89) compared to other CARSS 
models: CARM_N (discrimination: 0.68 (0.66 to 0.70) 
and calibration slope 0.47 (0.41 to 0.54)), CARM_NB 
(discrimination: 0.68 (0.65 to 0.70) and calibration slope 
0.37 (0.31 to 0.43)), and CARS_NB (discrimination: 0.68 
(0.66 to 0.70) and calibration slope 0.56 (0.47 to 0.64)).

Discussion
We assessed the performance of four computer-aided 
risk scores to predict the risk of COVID-19 in unplanned 
admissions to hospital. We found that the CARS_N 
model for sepsis (based on NEWS) had the best perfor-
mance for predicting the risk of COVID-19. CARS_N 
was developed for predicting sepsis and we found it has 
good discrimination and calibration compared to other 
CARSS models. This may reflect the reported overlap in 
features between sepsis and COVID-19, such as hyper 
inflammation and coagulopathy which also contribute 
to disease severity and death in COVID-19 patients [24]. 
Zhou et al. [25] found that the Sequential Organ Failure 
Assessment (SOFA) score (for sepsis) is associated with 
in-hospital mortality in COVID-19 patients.

Table 2 Characteristics of emergency medical admissions in 
COVID-19 versus non-COVID-19 who discharged alive/deceased
Characteristic COVID-19 Non-COVID-19

Discharged 
Deceased

Dis-
charged 
Alive

Discharged 
Deceased

Dis-
charged 
Alive

N 199 421 336 5488
Median Length of 
Stay (IQR)

9.61 (14.43) 6.73 
(10.52)

4.72 (8.88) 2.96 
(5.28)

Male (%) 123 (61.81) 216 
(51.31)

169 (50.3) 2749 
(50.09)

Mean Age [years] 
(SD)

80.22 (10.01) 70.08 
(16.43)

79.44 (12.65) 67.02 
(19.14)

Mean NEWS (SD) 4.94 (3.02) 3.52 (2.5) 4.89 (3.42) 2.33 
(2.08)

Mean CARM_N 
(SD)

0.14 (0.11) 0.06 
(0.07)

0.15 (0.13) 0.04 
(0.06)

Mean CARM_NB 
(SD)

0.15 (0.15) 0.06 
(0.08)

0.16 (0.17) 0.04 
(0.06)

Mean CARS_N 
(SD)

0.36 (0.19) 0.25 
(0.16)

0.28 (0.16) 0.16 
(0.13)

Mean CARS_NB 
(SD)

0.34 (0.2) 0.21 
(0.16)

0.29 (0.18) 0.15 
(0.13)

* Blood test results are missing 1175 (18.1%)
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A recent systematic review identified models to predict 
mortality from COVID-19 with c-statistics that ranged 
from 0.87 to 1 [26]. However, despite these high c-sta-
tistics, the review authors cautioned against the use of 
these models in clinical practice because of the high risk 
of bias and poor reporting of studies which are likely to 
have led to optimistic results [26]. The main advantages 
of our models are that they are (1) rigorously developed 

and externally validated, (2) designed to incorporate data 
which are already available in the patient’s electronic 
health record thus place no additional data collection or 
computational burden on clinicians and (3) are readily 
automated. The CARS_N model is particularly attractive 
because it uses NEWS data which can be available within 
a short while (< 30 min) of admission and so can support 

Table 3 Performance of CARSS models for predicting the risk of COVID-19
Model Mean risk 

without adverse 
outcome

Mean risk 
with adverse 
outcome

Absolute risk 
difference

Scaled brier score Discrimination
AUC (95% CI)

Calibration
Slope (95% 
CI)

CARM_N 0.09 0.15 0.06 -0.02
(-0.03 to -0.01)

0.68
 (0.66 to 0.70)

0.47
(0.41 to 0.54)

CARM_NB 0.09 0.17 0.08 -0.05
(-0.06 to -0.04)

0.68
 (0.65 to 0.70)

0.37
(0.31 to 0.43)

CARS_N 0.09 0.17 0.08 0.05
(0.04 to 0.06)

0.73
 (0.71 to 0.75)

0.81
(0.72 to 0.89)

CARS_NB 0.09 0.16 0.07 0.01
(0.00 to 0.02)

0.68
 (0.66 to 0.70)

0.56
(0.47 to 0.64)

CARM_N: for predicting mortality with NEWS data only; CARM_NB: for predicting mortality with NEWS and Blood test results data; CARS_N: for predicting sepsis 
with NEWS data only; CARS_NB: for predicting sepsis with NEWS and Blood test results data

Fig. 1 Receiver Operating Characteristic curve for four CARSS models in predicting the risk of COVID-19. CARM_N: for predicting mortality with NEWS 
data only; CARM_NB: for predicting mortality with NEWS and Blood test results data; CARS_N: for predicting sepsis with NEWS data only; CARS_NB: for 
predicting sepsis with NEWS and Blood test results data
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early clinical decision making about patients, which is 
essential to ensuring safe, high quality care.

There are several limitations to our study: (1) This data 
is from a single NHS Trust, and to understand the extent 
to which these findings are generalisable, further study 
is required (2) We used the index NEWS and blood test 
results which reflects the ‘on-admission’ risk of mortal-
ity of the patients. Nonetheless, NEWS and blood test 
results are repeatedly updated for each patient according 

to local hospital protocols (Figure S5 in supplementary 
material) (3) We identified COVID-19 based on ICD-10 
code ‘U071’ which was determined by COVID-19 swab 
test results (hospital or community) and clinical judg-
ment and so our findings are constrained by the accuracy 
of these methods [27, 28] (4) We have used NEWS in our 
data but since the NEWS2 is now widely used, further 
study is required to determine the accuracy of NEWS2 
based models [29].

Fig. 2 External validation of CARSS models, respectively for predicting the risk of COVID-19. NB: We limit the risk of COVID-19 to 0.40 for visualisation 
purpose because beyond this point, we have few patients
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Conclusion
The CARS_N model is reasonably accurate for predict-
ing the risk of COVID-19. It may be clinically useful as an 
early warning system at the time of admission especially 
to triage large numbers of unplanned admissions because 
it requires no additional data collection and is readily 
automated.
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