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partially be used as a model for the human small intestine 
[3, 12]. Since IPEC-J2 cells are not derived from rodents 
but from unsuckled piglets, they are relatively compara-
ble to human cell models [2, 3]. The similarity between 
swine and humans can also be observed at a superior 
level, as results of gene expression profiles with this cell 
line can be transferred to human models [13].

One frequently used method for assessment of effects 
of substances, pathogens, or similar is next-generation 
sequencing (NGS). It can be used for gene expression 
profiles or evaluating influenced pathways. For this pur-
pose, mRNAs, for example, can be extracted and ana-
lyzed. The behavior of epithelia-forming cells can vary 
during different growth phases or after epithelial closure 
during epithelial polarization [14]. Pi et al., for example, 
showed that after cell differentiating of IPEC-J2 cells 
gene expression profile changed [15], but not much is 
known about the time during epithelial closure. It has to 

Introduction
The cell line IPEC-J2 (RRID: CVCL_2246) represents 
a unique tool for in vitro research with small-intestine 
models. As one of the few cell models for the small intes-
tine [1], they fill a niche. In particular, this is in relation to 
the fact that this spontaneously infinite cell line is non-
tumorous and non (plasmid) transformed but spontane-
ously immortalized [2, 3]. IPEC-J2 cells are widely used 
for infection experiments with swine-specific pathogens 
[1, 4, 5], but also with non-swine-specific pathogens [6, 
7]. Further, non-pathogen (food additives and inflamma-
tion) experiments were carried out [8–11]. Results may 
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Abstract
Objective  The IPEC-J2 cell line is used as an in vitro small intestine model for swine, but it is also used as a model for 
the human intestine, presenting a relatively unique setting. By combining electric cell-substrate impedance sensing, 
with next-generation-sequencing technology, we showed that mRNA gene expression profiles and related pathways 
can depend on the growth phase of IPEC-J2 cells. Our investigative approach welcomes scientists to reproduce or 
modify our protocols and endorses putting their gene expression data in the context of the respective growth phase 
of the cells.

Results  Three time points are presented: (TP1) 1 h after medium change (= 6 h after seeding of cells), (TP2) the time 
point of the first derivative maximum of the cell growth curve, and a third point at the beginning of the plateau phase 
(TP3). Significantly outstanding at TP1 compared to TP2 was upregulated PLEKHN1, further FOSB and DEGS2 were 
significantly downregulated at TP2 compared to TP3. Any provided data can be used to improve next-generation 
experiments with IPEC-J2 cells.
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be noted that growing cell communities are also chang-
ing their gene expression profile in dependency on their 
respective growth phase [16]. This factor may influence 
the output of experiments during or after epithelial clo-
sure. Also, for experiments with IPEC-J2 cells, gene 
expression profiles may be used increasingly often [9, 11, 
17] and thus represent an indispensable tool for future 
studies.

As the respective growth phase of the cells can influ-
ence experiments [16], it may often be required to pay 
attention to the actual growth phase during design and 
conduction of a new, NGS-based study. Harmonizing the 
growth phase in similar studies based on NGS experi-
ments might help to analyze data. A strong and growth-
dependent influence on the gene expression profile at 
specific growth phases may support or cover treatment 
effects and influence experimental outcomes.

Our study aimed to provide comparative data on the 
gene expression profile of IPEC-J2 cells based on mRNA 
sequences at different time points of the growth curve 
at a given seeding density and a “treatment” protocol 
(change of the medium). The cells’ growth curve (epi-
thelial closure plotted against the time) was determined 
via electric cell-substrate impedance sensing technology 
(ECIS) for a specific seeding concentration. To enhance 
comparability of further mRNA NGS studies with this 
cell line, cell counting numbers at the respective sam-
pling-time points as well as the expected RNA output 
were also given.

Materials and methods
Cell culture conditions and handling
For all experiments, IPEC-J2 cells were used in pas-
sages 1–5 after thawing and they were cultured in Dul-
becco’s Modified Eagle Medium/F-12 Nutrient Mixture 
(Ham), [+] L-Glutamine (DMEM/F12, Gibco, Schwerte, 
Germany) including 5% fetal calf serum (FCS, Sigma, 
Hamburg, Germany) and 100 Units/ml Penicillin/Strep-
tomycin (Sigma, Hamburg, Germany). Detaching of cells 
was performed with pre-warmed trypsin (0.25% Tryp-
sin/0.02% EDTA, Sigma, Hamburg, Germany). See sup-
plementary for more details (Text S1).

IPEC J2 cells were monitored for Mycoplasma sp. via 
PCR (Thermo Fisher Scientific, Schwerte, Germany) and 
DAPI staining (mycoplasma test kit A3744, AppliChem, 
Darmstadt, Germany).

For both experiments (ECIS and NGS), the cells were 
seeded in a concentration of 12,500 cells per cm² growth 
area, adapted to Binder and Spiess et al. [18]. Afterwards, 
the cells were allowed to settle for 5 h, and the medium 
was replaced with fresh, pre-warmed medium. This step 
was included to simulate a possible treatment in the 
experimental design.

Electric Cell-substrate Impedance Sensing (ECIS) 
experiment
ECIS [19] was used to assess sampling time points. 
Before cell seeding, ECIS wells were incubated with cell 
culture medium until a stable baseline was achieved. The 
baseline was measured for a minimum of 1 h to display 
a stable background. In total, 400 growth curves were 
assessed. Processing of the growth curves in R and infor-
mation about repetitions can be found in the supplemen-
tary material (Text S2).

Next-generation sequencing (NGS) experiment and cell 
count
For the NGS experiment, cells were seeded in 12-well 
plates (Grainer, cellstar, Bio-one GmbH, Austria). In 
each 12-well plate, three of the lateral wells were used 
to ensure that each repetition was performed equally. 
For each of the three sampled time points (TP1-TP3), 
an independent plate was used so that changes in the 
microenvironment during cell growth were avoided. Still, 
all time points were seeded with the same cell suspen-
sion simultaneously. After reaching the respective time 
point (TP1-TP3), development of the cells was stopped 
by washing the cells with 2  ml pre-warmed DPBS and 
a treatment with respectively 700  µl QIAzol (QIAzol 
lysis reagent, Qiagen, Venlo, Netherlands, 5 min, two of 
the three wells of each time point) or pre-warmed tryp-
sin (one of the three wells of each time point until cells 
detached.

Trypsin-treated cells were removed from the wells 
and counted (Fig. S1). Detailed processing of the NGS 
experiment and employed kits can be found in the sup-
plementary material (Text S3). The experiment was 
repeated three times on different days with different cell 
suspensions.

Statistics and software: general information, data 
processing, and pathway analysis
Significance was accepted for p-values ≤ 0.05. All statis-
tical evaluations were performed with R software [20], 
and growth curves were assessed according to an algo-
rithm developed by Binder and Spiess et al. [18]. Mean 
and standard derivation (± SD) are given when applicable. 
Further, for NGS data analysis, adapter sequences were 
trimmed with Cutadapt [21], and the raw sequencing 
data were quality-controlled with FastQC [22]. STAR 
[23] and RSEM [24] were used for alignment and annota-
tion. Differential gene expression was analyzed with the 
identified transcriptomic profiles with DESeq2 [25], and 
significant changes were filtered by |log2 fold changes| ≥ 
1 a mean normalized expression profile of 50 reads over 
all samples and adjusted p-value ≤ 0.05.
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Pathways of the expressed mRNAs were analyzed with 
Reactome (Table S1) [26]. Therefore, TP1 was compared 
to TP2, and TP2 to TP3, respectively.

Results
Extracted time points of the ECIS experiment
The following three time points were extracted from 
the ECIS experiment: (TP1) 6  h after seeding (i.e. 1  h 
after treatment); (TP2) the time point in the log phase, 
when the first derivative maximum (FDM) of smooth-
ing spline curve in hours after seeding, was reached 
(35.71 h ± 5.58 h, TP2) and the third point in the growth 
phase, (TP3) when all cells had reached the plateau, seg3 
(segmented regression curve) in hours after seeding 
(45.34 h ± 8.67 h).

Based on the ECIS results, sampling for NGS experi-
ments was uniformly set to the following: TP1 = 6  h, 
TP2 = 36 h and TP3 = 60 h (TP3 is including a safety fac-
tor of approximate 1.75 x standard derivation).

Expectable quantity and quality of the harvested cells/RNA
The cell count in relation to the RNA concentration [ng/
µl] showed a correlation of R²=0.87, respectively, of an 
adjusted R² of 0.85. Dependence can be represented by 
the following equation: y = 0.002*x 41.654.

Analysis of NGS
Cluster analysis showed apparent differences in the 
mRNA expression between the different growth phases 
(Fig. 1A). A consideration of the reads per locus showed 
that, by far, the majority of reads were characterized as 
unique loci at all time-points (Fig.  1B). The number of 
significantly regulated genes per chromosome was assed. 
They showed an even distribution pattern per chromo-
some over the different time-points (Fig. 1C).

Differentially expressed genes showed a stronger dis-
tributed pattern in relation to log2 fold change and the 
respective adjusted –log 10 p-value for time-point 36  h 
compared to 6 h as for time-point 60 h compared to 36 h 
(Fig.  2). Particularly outstanding genes at time-point 
60  h compared to 36  h were DEGS2 (Delta 4-Desatu-
rase, Sphingolipid 2) and FOSB (FosB Proto-Oncogene, 
AP-1 Transcription Factor Subunit) (both downregu-
lation, Fig.  2), and at time-point 36  h compared to 6  h, 
PLEKHN1 (pleckstrin homology domain containing N1, 
upregulation) with a log2 fold change of over 30 (Fig. 2). 
A comprehensive list of all differentially expressed 
mRNAs during cell growth is given in Additional file 
2. Raw sequencing data are provided in the European 
Nucleotide Archive (ENA accession ID: PRJEB74363).

Fig. 1  Characterization of batches (A) and reads per loci (B) at three time-points and (C) distribution of significantly regulated genes per chromosome
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Pathway analysis via reactome
Analysis of significantly expressed genes via Reactome 
showed regulations, particularly in the cell cycle and 
rRNA processing pathways. Cell cycle activities were in 
focus during logarithmic cell growth (TP1/TP2). After 
reaching the plateau phase (TP2/TP3), rRNA processing 
and modification activities took up the largest part. The 
10 most relevant pathways detected by Reactome can be 
found in the supplementary material (Table S1).

Discussion
Sampling of different time points and comparison to 
a non-treated control group can improve findings of 
treated cells, as we showed previously [27]. Derived 
from the corresponding ECIS growth curve, three pos-
sible time points were evaluated and set appropriately, at 
which a sampling of IPEC-J2 cells can be recommended if 
seeding and treatment are performed as described in our 
protocol.

It has to be kept in mind that a fully polarized mono-
layer of IPEC-J2 cells was most likely not formed for the 
chosen time points, as this was not the focus of our study. 
A polarized monolayer might be reached later within 1–2 
weeks, depending on cell culture medium, according to 
Vergauwen [3].

As expected, assessing gene expression profiles of 
IPEC-J2 cells at different phases during cell growth 
resulted in different findings, due to different growth 
phases of cells (Fig. 2).

Significantly outstanding at TP1 compared to TP2 
was upregulated PLEKHN1 (Fig.  2) that is, among oth-
ers involved in phospholipid binding [28] and apoptotic 
processes [29]. Kuriyama et al. showed that expression 
of PLEKHN1 was induced by stress, and it might be an 
indicator of damaged cells. As a consequence, they were 
able to observe an increased in vivo survival rate of can-
cer cells in PLEKHN1 knock-out mice [29]. This indicates 
the logarithmic growth phase of small intestine cells as a 
suitable sampling time point in gene expression studies 
regarding the behavior of damaged cells, among others, 
in correlation with intestinal cancer.

For mice, it is known that small intestine stem cells can 
show alterations during aging [30]. Nefzger et al. found 
a correlation between the aging of intestinal stem cells 
and three key transcription factors, including the down-
regulation of FOSB in aged cells [31]. In our study, FOSB 
was significantly downregulated at TP2 compared to TP3 
(Fig. 2). This indicates a similar behavior of FOSB during 
cell growth of small intestine cells as during the aging of 
intestine stem cells. This gene might, therefore, also be 
suitable as an indicator of a late growth phase of the cell 
growth curve of small intestine cells. This finding also 
supports FOSB for clinical applications regarding regen-
eration of the small intestine, as Nefzger et al. propose 
[31].

The same growth phase might be of interest for stud-
ies concerning DEGS2. DEGS2 is encoding Delta(4)-
desaturase sphingolipid 2 and is therefore involved in the 

Fig. 2  Differentially expressed genes at the chosen time-points. Dots represent log2 fold changes and its respective adjusted -log10 p-value between 
time-point 36 h compared to 6 h (light grey) and between time-point 60 h compared to 36 h (dark grey)
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sphingolipid biosynthesis [32] and regulation of phytoc-
eramide and dihydroceramide in the intestine [33]. In our 
study, DEGS2 was significantly downregulated at TP2 
compared to TP3 (Fig. 2). Dysregulation of DEGS2 might 
be associated with multiple diseases, such as cancer (Guo 
et al., 2021) or inflammation-associated diseases [34, 35]. 
Therefore, this specific growth phase might be specifi-
cally sensitive as a model for those diseases.

Figure S1 can be consulted as a first estimation of how 
many cells have to be harvested to achieve the desired 
concentration of RNA. Strongly deviating concentra-
tions between replicates may indicate varying seeding 
concentrations, cell quality, or handling or incubation 
conditions (e.g. temperature changes, handling time). It 
has to be assumed that, in particular between different 
cell dilutions, seeded at different days with maybe differ-
ent passage times, it may often not be perfectly possible 
to synchronize the growth behavior of the cells (compare 
Fig. 1A).

Conclusion
Our experiments showed that the respective sampling 
time point during cell growth can influence the outcome 
of a mRNA gene expression experiment with an IPEC-J2 
cell model. Accordingly, this aspect should be considered 
when working with cells as an in vitro model. Therefore, 
unequivocally, naming the sampling time point (growth 
phase of cell line) might improve the comparability of 
different studies. Further, choosing the appropriate sam-
pling time point or the subsequent sampling of multiple 
time points during cell growth might improve outcomes.

Limitations
It has to be kept in mind that different cell lines might 
vary differently in the intensity of how the gene expres-
sion profiles differ between multiple time points during 
cell growth.
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