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Abstract 

Objectives The main objective of this work is to design an efficient numerical scheme is proposed for solving singu-
larly perturbed time delayed parabolic problems with two parameters.

Results The scheme is constructed via the implicit Euler and non-standard finite difference method to approxi-
mate the time and space derivatives, respectively. Besides, to enhance the accuracy and order of convergence 
of the method Richardson extrapolation technique is employed. Intensive numerical experimentation has been 
done on some model examples. Further, the layer behavior of the solutions is presented using graphs and observed 
to agree with the existing theories. Finally, error analysis of the scheme is done and observed that the proposed 
method is parameter uniform convergent with the order of convergence 

(

(�t)2 + h
2
)
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Introduction
Many real-life problems in the fields of engineering and 
applied mathematics involve small positive parameter(s). 
Many researchers, scholars and engineers considered dif-
ferential equations with one-parameter ε(0 < ε ≪ 1) , 
multiplying the highest derivative of the equation. This 
type of equation is one-parameter singularly perturbed 
differential equation. A number of research papers which 
deal with asymptotic, analytical and numerical solutions 
of such type of ordinary and partial differential equations 
can be found in the literature. Asymptotic and numeri-
cal solutions of two-parameter singularly perturbed 

differential equations are not studied extensively like 
their one-parameter counterpart.

It is a well-known fact that the presence of small 
parameters in the differential equations exhibit bound-
ary and/or interior layers in the solution. O’Malley intro-
duced singularly perturbed two-parameter problems and 
examined asymptotic expansion of their solutions [1–4]. 
In the subsequent years, several numerical methods were 
developed to improve the accuracy of the asymptotic 
methods proposed by O’Malley and his co-researchers 
[5]- [8]. From many researchers in the literature, author 
in [9] has proposed a robust fitted operator finite dif-
ference method for a two-parameter singular perturba-
tion problem. Recently, quadratic B-spline collocation 
method for two-parameter singularly perturbed problem 
on exponentially graded mesh was proposed in [10].

The numerical solution of two-parametric singularly 
perturbed parabolic partial differential equations with 
non-smooth data were studied in [11–13]. Parameter-
uniform numerical methods have been proposed by 
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different researchers to solve two-parametric singularly 
perturbed parabolic partial differential equations with 
smooth data. To mention those methods, implicit Euler 
method in time on a uniform mesh and upwind finite dif-
ference method on Shishkin mesh [14], Rothe’s method 
for temporal discretization on a uniform mesh and finite 
element method for spatial discretization on a Shishkin 
mesh [15], an implicit Euler method in time and upwind 
finite difference method in space has been introduced 
using layer adapted equidistributed/moving meshes in 
[16], the classical implicit Euler method for time discre-
tization and upwind scheme on the Shishkin-Bakhvalov 
mesh for spatial discretization was proposed in [17], an 
implicit Euler method for time discretization and a non-
standard finite difference method on uniform mesh for 
spatial discretization was proposed in [18], the implicit 
Euler method for time stepping on a uniform mesh and 
a special hybrid monotone difference operator for spa-
tial discretization on a specially designed piecewise uni-
form Shishkin mesh was considered in [19], an implicit 
Euler scheme on a uniform mesh in the temporal direc-
tion and the quadratic B-spline collocation scheme on 
an exponentially graded mesh in the spatial direction 
was constructed in [20], Crank-Nicolson scheme for the 
time derivative and cubic spline in tension for the spatial 
derivatives on a layer resolving non-uniform Bakhvalov-
type mesh for a singularly perturbed two small param-
eters was presented in [22] to solve singularly perturbed 
two-parameter parabolic convection-diffusion–reaction 
problems. The authors in [40] have developed robust 
weak Galerkin finite element method for two parameter 
singularly perturbed parabolic problems on nonuniform 
meshes. The scholars in [43] have designed two hybrid 
computational algorithms to find approximate solutions 
for singularly perturbed parabolic convection-diffusion–
reaction problems with two small parameters. All the 
aforementioned works for two-parameter singularly per-
turbed parabolic problems deals with initial-Dirichlet 
boundary conditions having no delay terms. However, 
the robust numerical solution of two-parameter singu-
larly perturbed parabolic problems with delay terms are 
still limited.

Due to the wide application area of singularly per-
turbed problems with delay(s) have gained remarkable 
attention from researchers. For example, in population 
ecology, time delay represents the hatching period or 
duration of gestation; in genetic repression modeling, 
time delays play an important role in processes of tran-
scription and translation as well as spatial diffusion of 
reactants and in control systems, delay terms account for 
the time delay in actuation and in information transmis-
sion and processing. Many other examples can be found 
in [34]. Also, the numerical treatment of such problems 

premeditated by many scholars. For instance, one-
parameter singularly perturbed parabolic problems with 
time delay were studied in [23, 24, 36–38] and references 
therein. High-order finite difference technique for delay 
pseudo-parabolic equations is discussed in [41]. The 
authors [17] have established the finite difference scheme 
on Bakhvalov-type mesh for the singularly perturbed 
pseudo-parabolic problems with time-delay. Cimen and 
Amiraliyev [25] have suggested a uniform convergence 
method for singularly perturbed delay ordinary differ-
ential equation. Sumit et al. [26] have presented a robust 
numerical scheme using a hybrid monotone finite differ-
ence scheme on a rectangular mesh which is a product of 
uniform mesh in time and a layer-adapted Shishkin mesh 
in space for two-parametric singularly perturbed para-
bolic problems with time delay. Govindarao et  al. [27] 
have developed a uniformly convergent computational 
method using the implicit Euler scheme for temporal dis-
cretization on a uniform mesh and the upwind difference 
scheme for the spatial discretization on the Shishkin type 
meshes (standard Shishkin mesh, Bakhvalov-Shishkin 
mesh) for singularly perturbed two parameter time delay 
parabolic problem. Kumar and Kumar [45] Have con-
structed numerical method using a hybrid monotone 
finite difference scheme on a rectangular mesh which is 
a product of uniform mesh in time and a layer-adapted 
Shishkin mesh in space for singularly perturbed two-
parameter parabolic partial differential equations with 
time delay. The authors in [39] have suggested the high 
order difference approximation with Identity Expan-
sions technique to construct a second order finite differ-
ence scheme and combine this with standard backward 
Euler difference scheme in a special way on a piecewise-
uniform Shishkin mesh to solve coupled system of singu-
larly perturbed first order ordinary differential equations. 
Multigrid techniques to solve the linear systems arising 
from finite difference discretization on Shishkin meshes 
of 2D singularly perturbed problems have presented in 
[44]

The schemes in [26] and [27] need apriori knowl-
edge about the location and the width of the boundary 
layer(s) which might be difficult to understand for begin-
ner researchers. Exponentially fitted difference (EFD) 
schemes have gained popularity as a powerful technique 
to solve boundary value problems. For instance, the 
authors in [31–33] have suggested different EFD schemes 
for singularly perturbed two-point boundary-value 
problems.

Motivated by the proceeding works, in this work, we 
constructed the non-standard difference method together 
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with the Richardson extrapolation for two-parameter 
singularly perturbed parabolic problem with time delay. 
Let �N

s = (0, 1) and �M
t = (0,T ] be the space and time 

domain respectively, where T is fixed time. Then, the 
rectangular domain is the tensor product defined by 
� = �N

s ×�M
t  . Consider the following two-parameter 

singularly perturbed parabolic problem

subject to initial condition

and boundary conditions

where ε(0 < ε ≪ 1) and µ(0 ≤ µ ≪ 1) are two small 
perturbation parameters and τ > 0 is delay param-
eter. For the existence and uniqueness of the solu-
tion, the functions a(s, t), b(s, t), c(s, t),  f(s, t) q0(t), q1(t) 
and θ(s, t) are sufficiently smooth and bounded with 
a(s, t) ≥ α > 0, b(s, t) ≥ β > 0 . The mathematical 
models related to two-parameter singularly perturbed 
problem of type (1) arises in transport phenomena in 
chemistry, biology, chemical reactor theory [4], lubrica-
tion theory [6] and dc motor theory [5] and flow through 
unsaturated porous media [8]. In two-parameter SPPs, 
the diffusion and convection terms are multiplied by the 
perturbation parameters.

Two-parameter singularly perturbed boundary value 
problems was first introduced by O’Malley, see [1–4]. He 
has shown that the layer behaviour for these problems 
depends not only on the parameters ε and µ , but signifi-
cantly depends on the ratios of ε to different powers of µ . 
However, the ratio of µ2 to ε plays a significant role in the 
study of these problems. The particular cases, µ = 0 in 
which the parabolic type layers each of width O (

√
ε) appear 

at both lateral boundary of the domain, and µ = 1 in which 
an exponential layer of width O (ε) appears near the left lat-
eral boundary have been extensively considered analytically 
as well as numerically. For small ε and µ , the solution to the 
problem (1)–(3) exhibits boundary layers in the neighbor-
hoods of s = 0 and s = 1.

Notations: Throughout this paper N and M denote the 
number of mesh points in s and t direction respectively. C 
denotes a generic positive constant independent of the sin-
gular perturbation parameters ε,µ and the mesh sizes.

(1)







Lε,µz(s, t) ≡ ε
∂2z(s, t)

∂s2
+ µa(s, t)

∂z(s, t)

∂s
− b(s, t)z(s, t)− ∂z(s, t)

∂t
= −c(s, t)z(s, t − τ )+ f (s, t), (s, t) ∈ �,

(2)z(s, t) = θ(s, t), (s, t) ∈ [0, 1] × [−τ , 0],

(3)
z(0, t) = q0(t), 0 ≤ t ≤ T ,

z(1, t) = q1(t), 0 ≤ t ≤ T ,

Analytical aspects of the problem

Lemma 1 (Continuous minimum principle). Assume 
that z(s, t) ∈ C(2,1)(�̄) be sufficiently smooth function 
such that z(s, t) ≥ 0 on (s, t) ∈ [0, 1] × [−τ , 0] , z(0, t) ≥ 0 , 
z(1, t) ≥ 0 on 0 ≤ t ≤ T  , and Lε,µz(s, t) ≤ 0, (s, t) ∈ � . 
Then, z(s, t) ≥ 0 , (s, t) ∈ �̄.

Proof See [35]   �

The following Lemma proves the stability estimate to 
obtain unique solution.

Lemma 2 (Uniform stability estimate) Let z(s, t) be the 
solution to the continuous problem (1)–(3), then it satis-
fies the bound

where ‖.‖� is used to denote maximum norm given by 
�z�� = max(s,t)∈� |z(s, t)|.

Proof See [35].   �

Description of the numerical method
We first discretized the time direction using an implicit 
Euler method with uniform step size �t which leads to a 
system of boundary value problem. Then, the discretiza-
tion of space direction is made using the non-standard 
finite difference method.

Time semi‑discretization
We have two intervals [−τ , 0] and [0,  T] on the time 
direction and we use the uniform mesh with time step �t

where M is number of mesh points in t-direction in the 
interval [0,  T] and m is the number of mesh points in 
[−τ , 0] . The step length �t satisfies m�t = τ , where m 
is a positive integer and tj = j�t, j ≥ −m . To discretize 
the time variable for Eq. (1), we use the implicit Euler 
method, which is given by

subject to semi-discrete initial and boundary conditions

�z��̄ ≤ max
{

|θ(s, t)|, |q0(t)|, |q1(t)|
}

+ β−1�f �,

�M
t =

{

tj : tj = j�t, j = 0, · · · ,M, tM = T ,�t = T/M
}

,

�m
t =

{

tn : tn = n�t, n = 0, · · · ,m, tm = τ ,�t = τ/m
}

,

(4)
L
M
ε,µZ

j+1 ≡εZss(s, tj+1)+ µa(s, tj+1)Zs(s, tj+1)

− d(s, tj+1)Z(s, tj+1) = g(s, tj+1),
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where d(s, tj+1) = b(s, tj+1)+ 1
�t and g(s, tj+1) =

− c(s, tj+1)Z(s, tj+1−m)+ f (s, tj+1)−
Z(s,tj)
�t  . By using the 

initial condition, we can evaluate the right-hand side as

The local truncation error of the time semi-discretization 
is given by ej+1 = z(s, tj+1)− Z(s, tj+1) , where Z(s, tj+1) is 
the solution of the following boundary value problem

with the boundary conditions

Now, we state the bounds for the errors in the local and 
global as follows.

Lemma 3 (Local error estimate) If

the local error estimate of the time discretization is given 
by

Proof One can find the proof of lemma in [27].  �

The global error is the measure of the contribution of 
the local error estimate at each time step and is given 
by Ej = z(s, tj)− Z(s, tj).

Lemma 4 Under Lemma (3), the global error estimate 
at tj is given by

We conclude that time semi-discretization is first-order 
uniformly convergent. The ε−convergence analysis of the 
numerical scheme which we propose requires that we use 

(5)







Z(s, tj+1) = θ(s, tj+1), (s, tj+1) ∈ [0, 1] × [−τ , 0],
Z(0, tj+1) = q0(tj+1), 0 ≤ tj+1 ≤ T ,
Z(1, tj+1) = q1(tj+1), 0 ≤ tj+1 ≤ T ,

g(s, tj+1) =
{

Z(s,tj)

�t − c(s, tj+1)θ(s, tj+1−m)+ f (s, tj+1), j = 0, 1, ...,m,
Z(s,tj)

�t − c(s, tj+1)Z(s, tj+1−m)+ f (s, tj+1), j = m+ 1, ...,M.

(6)εZss

(

s, tj+1

)

+ µa
(

s, tj+1

)

Zs

(

s, tj+1

)

− d
(

s, tj+1

)

Z
(

s, tj+1

)

= g
(

s, tj+1

)

,

(7)
{

Z(0, tj+1) = q0(tj+1), 0 ≤ tj+1 ≤ T ,
Z(1, tj+1) = q1(tj+1), 0 ≤ tj+1 ≤ T .

∣

∣

∣

∣

∂kZ(s, t)

∂sk

∣

∣

∣

∣

≤ C , (s, t) ∈ �̄, 0 ≤ k ≤ 2,

�ej+1�∞ ≤ C�t2, 1 ≤ j ≤ M.

�Ej�∞ ≤ C�t, j ≤ T/�t.

bounds on the solution and its derivatives. The solutions of 
the characteristic equation for time semi-discrete problem

are r0(s) < 0 and r1(s) > 0 which are used to describe the 
boundary layers at s = 0 and s = 1 , respectively. The 

εr2(s, tj)+ µa(s, tj+1)r(s, tj+1)− (b(s, tj+1)+ 1/�t) = 0

quantities µ0 and µ1 are defined as µ0 = −max
[0,1]

r0(s) and 

µ1 = max
[0,1]

r1(s).

Remark 1

The situations of two external layers are characterized by 
µ2 ≪ 1 or µ2/ε → 0 as ε → 0 , which implies that 
µ0 ≈ µ1 ≈ min

[0,1]

√

(b(s,tj+1)+1/�t)

ε
 and we have boundary 

layers at s = 0 and s = 1 . The boundary layer at s = 0 is 
encountered in the case when ε ≪ µ2 as µ → 0 . In this 
case, µ1 ≈ 0 and µ0 ≈ min

[0,1]
µa(s,tj)

ε
.

The next theorem, gives the ε-uniform bounds for the 
derivatives of the solution u with respect to x, needs to 
study the uniform convergence at spatial discretization.

Theorem 1 Up to a certain order k that depends on the 
smoothness of of the functions a(s, t), b(s, t), f(s, t) and for 
any real constant p ∈ (0, 1) , we have the following bound

Proof For the details of the proof, see [15].   �

Spatial discretization
In this section, we discretize the spatial vari-
able of (4) using the nonstandard finite difference 
method of Mickens [29] as discussed below. On 

∥

∥

∥

∥

∂kz(s)

∂sk

∥

∥

∥

∥

�̄

≤ C
(

1+ µk
0e

−pµ0s + µk
1e

−pµ1(1−s)
)

, 0 ≤ k ≤ q.
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the spatial domain [0,  1], we introduce the equidis-
tant meshes with uniform mesh length h such that 
s0 = 0, si = ih, i = 1(1)N − 1, sN = 1, h = 1

N  , where h is 
the step size and N is the number of mesh points in the 
spatial direction. The spatial Discretization of (4) yields

We use the notation Z(si, tj+1) ≡ Zi as the approxima-
tion of z(si, tj+1) ≡ zi for the sake of simplicity. From the 
theory of non-standard finite difference method, we can 
discretize (8) in space to obtain the discrete problem in 
the form

where di = bi + 1
�t and gi = −ciZ

−m
i + fi − Zi

�t for 
i = 1, ...,N − 1, j = 0, ...,M. According to Mickens 
[28, 29], the concept of sub-equations is the major tool 
to derive the denominator function for the differential 
equation. From (9), we take the homogeneous form of the 
constant coefficient sub-equation

where δ = µai and η = di = bi + 1
�t . Equation (10) has 

two linearly independent analytical solutions, namely, 
exp(�1x) and exp(�2x) , where

Following Micken’s, we construct the second-order dif-
ference equation for (10) as follows

Simplifying the determinant in (12), we get

which is the exact scheme for (10) in the sense that (13) 
has the same general solution

(8)ε
∂2Z(si ,tj+1)

∂s2
+ µa(si, tj+1)

∂Z(si ,tj+1)

∂s − b(si, tj+1)Z(si, tj+1)−
Z(si ,tj+1−Z(si ,tj

�t
= −c(si, tj+1)Z(si, tj+1−m)+ f (si, tj+1).

(9)

LN ,M
ε,µ Zi ≡ ε

(

Zi−1−2Zi+Zi+1

γ 2
i

)

+ µai

(

Zi+1−Zi

h

)

− diZi = gi.

(10)

ε

(

Zi−1 − 2Zi + Zi+1

γ 2
i

)

+ δ

(

Zi+1 − Zi

h

)

− ηZi = 0,

(11)�1,2 =
−δ ±

√

δ2 − 4εη

2ε
.

(12)

∣

∣

∣

∣

∣

∣

Zi−1 Z1,i−1 Z2,i−1

Zi Z1,i Z2,i
Zi+1 Z1,i+1 Z2,i+1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Zi−1 exp(�1xi−1) exp(�2xi−1)

Zi exp(�1xi) exp(�2xi)
Zi+1 exp(�1xi+1) exp(�2xi+1)

∣

∣

∣

∣

∣

∣

= 0.

(13)

− exp(
δh

2ε
)Zi+1 + 2 cosh

(

h
√

δ2 + 4εη

2ε

)

Zi − exp(
−δh

2ε
)Zi−1 = 0,

(14)Zi = C1 exp(�1xi)+ C2 exp(�2xi)

as (10). It is noted that to construct the non-stand-
ard finite difference method, we need to find a suitable 
denominator function which replaces h2 . To this end, the 
extraction of the denominator function from (13) is not 
straightforward. However, the fact that the layer behav-

iors of the solution of problem (1) and that of the prob-
lem (10) in the case when η ≡ 0 are similar [9]. Thus, for 
the latter case, that is, η ≡ 0 , we have the exact scheme of 
the form

from hyperbolic identity. Multiplying both sides of equa-
tion (15) by exp( δh2ε ) , we have

Adding the term (Zi+1 + Zi) and subtracting it and after 
some manipulations, we have

From (16), we have

where the denominator function is given by

Adopting the denominator function for the variable coef-
ficient, we can write as

Thus, we get the following fully discrete problem

(15)
− exp(

δh

2ε
)Zi+1 +

(

exp(
δh

2ε
)+ exp(

−δh

2ε
)

)

Zi

− exp(
−δh

2ε
)Zi−1 = 0,

exp(
δh

ε
)Zi+1 −

(

exp(
δh

ε
)+ 1

)

Zi + Zi−1 = 0,

(16)

Zi+1 − 2Zi + Zi−1 +
(

exp(
δh

ε
)− 1

)

(Zi+1 − Zi) = 0.

(17)ε
Zi−1 − 2Zi + Zi+1

γ 2
+ δ

Zi+1 − Zi

h
= 0,

(18)γ 2(h, ε,µ) ≡ γ 2 =
hε

µa

(

exp(
µah

ε
)− 1

)

.

(19)γ 2
i (h, ε,µ) ≡ γ 2

i =
hε

µai

(

exp(
µaih

ε
)− 1

)

.

(20)

ε
Z
j+1
i−1−2Z

j+1
i +Z

j+1
i+1

γ 2
i

+ µa
j+1
i

(

Z
j+1
i+1−Z

j+1
i

h

)

− b
j+1
i Z

j+1
i − Z

j+1
i −Z

j
i

�t

= −c
j+1
i Z

j+1−m
i + f

j+1
i ,
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with the following discrete initial and boundary 
conditions

where the denominator function is given as

The discrete scheme in (20) and the discrete conditions 
in (21) can bewritten in matrix form as

where Z and G are column vectors of N − 1 and the 
matrix W is a tri-diagonal matrix of (N − 1)× (N − 1) . 
The entries of the coefficient matrix W are given by

The entries of column vectors G and Z are given as 
follows

Next, we prove some useful attributes the discrete 
scheme in (22). The discrete operator LN ,M

ε,µ  defined in (9) 
satisfies the following discrete minimum principle.

Theorem  2 Assume that LN ,M
ε,µ  be discrete operator 

given in (9) and �j
i be any mesh function that satisfies 

the initial condition �−j
i ≥ 0, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ m 

and boundary conditions �j
0 ≥ 0, �

j
N ≥ 0 , 0 ≤ j ≤ M . If 

LN ,M
ε,µ �

j
i ≤ 0 for all (i, j) ∈ �N ,M , then �j

i ≥ 0 in �̄N ,M .

Proof Let s and p be indices such that �p
s = min

∀(i,j)
�

j
i for 

�
j
i ∈ �̄N ,M . Assume that �p

s < 0 . Then, it is easy to see 
that (s, p) ∈ {1, · · · ,N − 1} × {1, · · · ,M} , because 

(21)











Z
−j
i = θ(si,−tj), i = 1, · · · ,N − 1, j = 0, · · · ,m,

Z
j+1
0 = q0(tj+1), tj+1 ∈ [0,T ],

Z
j+1
N = q1(tj+1), tj+1 ∈ [0,T ],

γ 2
i (h, ε,µ) ≡ γ 2

i =
hε

µa
j+1
i

(

exp(
µa

j+1
i h

ε
)− 1

)

.

(22)WZ = G, i = 1, 2, ...,N − 1, j = 0, ...,M,

(23)



















Wi,i−1= ε

γ 2
i

, i = 1, ...,N − 2,

Wi,i = −( 2ε
γ 2
i

+ µa
j+1
i
h

+ 1
�t + b

j+1
i ), i = 1, ...,N − 1,

Wi,i+1= ε

γ 2
i

+ µa
j+1
i
h

, i = 1, ...,N − 1.

(24)



















G
j+1
0 = q0(tj+1),

G
j+1
i = −c

j+1
i Z

j+1−m
i + f

j+1
i − Z

j
i

�t , i = 1(1)N − 1,

G
j+1
N = q1(tj+1),

Z = [Z0,Z1, · · · ,ZN ]T .

otherwise �p
s ≥ 0 . It follows that �p

s+1 −�
p
s ≥ 0 and 

�
p
s −�

p
s−1 ≤ 0 . Therefore, now

which is a contradiction and thus, the assumption 
�

p+1
s < 0, ∀(s, p) is wrong. Thus, �p+1

s > 0 implies that 
�

j
i ≥ 0 in �̄N ,M .   �

Using this discrete minimum principle, we now show 
that the present method also satisfies the uniform stabil-
ity estimate given in the following lemma.

Lemma 5 The discrete operator LN ,M
ε,µ  is uniformly sta-

ble, in the sense that if Pj+1
i  is any mesh function such that 

P
j+1
0 = P

j+1
N = 0 , then

Proof Let define the two barrier functions (�±)
j
i by 

(�±)
j
i = Y ± P

j+1
i , where

We have (�±)
j+1
0 = Y ± P

j+1
0 = Y ± q0(tj+1) ≥ 0 , and 

(�±)
j+1
N = Y ± P

j+1
N = Y ± q1(tj+1) ≥ 0.

On the discretized domain 1 ≤ i ≤ N − 1 , we have

Using the fact that where 0 < β ≤ b
j+1
i < (b

j+1
i + 1/�t) , 

we have LN ,M
ε,µ (�±)

j+1
i ≤ 0 . By the discrete min-

imum principle in Theorem (2), we obtain 
(�±)

j+1
i ≥ 0, 0 ≤ i ≤ N .   �

L
N ,M
ε,µ �p

s =
ε

γ 2
s

(�
p+1

s+1
− 2�p+1

s +�
p+1

s−1
)

+ µa
p+1
s

h
(�

p+1

s+1
−�p+1

s )− dp+1
s �p+1

s ,

= ε

γ 2
s

[(�p+1

s+1
−�p+1

s )− (�p+1
s −�

p+1

s−1
)]

+
µa

p+1
s

h
(�

p+1

s+1
−�p+1

s )− dp+1
s �p+1

s ,

≥ 0,

|Pj+1
i | ≤ β−1 max

1≤i≤N−1
|LN ,M

ε,µ P
j+1
i |, for 0 < i < N .

= β−1 max
1≤i≤N−1

|LN ,M
ε,µ P

j+1
i |.

L
N ,M
ε,µ (�±)

j+1
i ≡−

(b
j+1
i + 1/�t)

β

max
1≤i≤N−1

|LN ,M
ε,µ P

j+1
i | ± L

N ,M
ε,µ P

j+1
i .
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Convergence analysis
We use the following lemma to prove the uniform con-
vergence analysis of the discrete problem (9).

Lemma 6 For all positive integers k on a fixed mesh, we 
have

lim
ε→ 0

max
1<i<N−1

exp(−Cxi√
ε
)

ε
k
2

= 0 and lim
ε→ 0

max
1<i<N−1

exp(−C(1−xi)√
ε

)

ε
k
2

= 0,

where xi = ih, h = 1
N , ∀i = 1, ...,N − 1.

Proof For the proof, see [30].   �

The following analysis concerns the space variable x. 
The local truncation error in the spatial variable of the 
proposed method is given by

Simplifying the above expression, we obtain

Taylor series expansions of the terms zj+1
i , z

j+1
i+1 and zj+1

i−1 
on space direction are given as following

L
N ,M
ε,µ (Z

j+1
i − z

j+1
i ) = (Lε,µ − L

N ,M
ε,µ )z

j+1
i ,

= Lε,µz
j+1
i − L

N ,M
ε,µ z

j+1
i ,

= ε
(

z′′
)j+1

i
+ µa

j+1
i

(

z′
)j+1

i
− b

j+1
i z

j+1
i

−
[

ε

(

z
j+1
i+1 − 2z

j+1
i + z

j+1
i−1

γ 2
i

)

+ µa
j+1
i

(

z
j+1
i+1 − z

j+1
i

h

)

− b
j+1
i z

j+1
i

]

.

(25)
L
N ,M
ε,µ (Z

j+1
i − z

j+1
i ) = ε

(

z′′
)j+1

i
+ µa

j+1
i

(

z′
)j+1

i

− ε

(

z
j+1
i+1 − 2z

j+1
i + z

j+1
i−1

γ 2
i

)

− µa
j+1
i

(

z
j+1
i+1 − z

j+1
i

h

)

.

z
j+1
i+1 = zi(t)+ h

(

z′
)j+1

i
+

h2

2

(

z′′
)j+1

i
+

h3

6

(

z′′′
)j+1

i
+

h4

24

(

z′′′′
)j+1

i
+ · · ·

z
j+1
i−1 = z

j+1
i − h

(

z′
)j+1

i
+

h2

2

(

z′′
)j+1

i
−

h3

6

(

z′′′
)j+1

i
+

h4

24

(

z′′′′
)j+1

i
+ · · · .
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Adding the first two equations in the above Taylor series 
expansion, we deduce the following

From the first Taylor series expansion, we have

Substituting equations (26)-(27) in their respective posi-
tions into (25) and rearranging, we obtain

Simplifying (28), we obtain

Using a truncated Taylor series expansion of the denomi-
nator function [18]

in (30) gives

Applying the relation h > h2 in (31) and using the bounds 
on derivatives in Theorem (1) together with Lemma 
(6) and using the fact that as ε → 0 , both the terms 
µk
0 exp(−pµ0si) and µk

1 exp(−pµ1(1− si)) → 0 for all 
k ∈ {0, 1, 2, · · · , } . Thus, the discrete problem satisfies the 
following bound

where C is constant independent of the perturbation 
parameters and mesh sizes. Invoking the uniform stabil-
ity in Lemma (5), we obtain the result

(26)
z
j+1
i+1 − 2z

j+1
i + z

j+1
i−1 = h2

(

z′′
)j+1

i
+

h4

12

(

z′′′′
)j+1

i
+ · · · .

(27)
z
j+1
i+1 − z

j+1
i = h

(

z′
)j+1

i
+

h2

2

(

z′′
)j+1

i
+

h3

6

(

z′′′
)j+1

i
+ · · · .

(28)

L
N ,M
ε,µ (Z

j+1
i − z

j+1
i ) = ε

(

z′′
)j+1

i
+ µa

j+1
i

(

z′
)j+1

i
−

ε

γ 2
i

(

h2
(

z′′
)j+1

i
+

h4

12

(

z′′′′
)j+1

i

)

−
µa

j+1
i

h

(

h
(

z′
)j+1

i
+

h2

2

(

z′′
)j+1

i
+

h3

6

(

z′′′
)j+1

i

)

.

(29)
L
N ,M
ε,µ (Z

j+1
i − z

j+1
i ) = ε

(

z′′
)j+1

i
−

ε

γ 2
i

(

h2
(

z′′
)j+1

i
+

h4

12

(

z′′′′
)j+1

i

)

−
(

µai(t)

2

(

z′′
)j+1

i

)

h

bigg(
µa

j+1
i

6

(

z′′′
)j+1

i

)

h2.

(30)1

γ 2
i

=
1

h2
−

µa
j+1
i

2εh
+

µ2
(

a
j+1
i

)2

12ε2

(31)L
N ,M
ε,µ (Z

j+1
i − z

j+1
i ) =

(

µa
j+1
i

(

z′′
)j+1

i

)

h−
(

(µa
j+1
i )2

12ε

(

z′′
)j+1

i
+

µai(
j+1

6

(

z′′′′
)j+1

i

)

h2.

|LN ,M
ε,µ (Z

j+1
i − z

j+1
i )| ≤ Ch.

Therefore, main convergence of the fully discretized 
scheme is given in the following theorem.

Theorem 3 Let zj+1
i ∈ C4,2(�̄) be the solution to prob-

lem in (1)-(3)) and Zj+1
i  be the solution to discrete prob-

lem in (20) with its discrete boundary conditions in (21). 
Then, the overall error bound satisfies

From the above theorem, we deduce that the developed 
method is first-order convergent, independent of the 
parameters ε and µ both in space and time directions.

Next, we use Richardson extrapolation to boost the 
accuracy and rate of convergence for the proposed 
method.

|Zj+1
i − z

j+1
i | ≤ Ch.

(32)max
0≤i≤N ;0≤j≤M

|Zj+1
i − z(si, tj+1)| ≤ C(h+�t).

Richardson extrapolation
Richardson extrapolation is a technique used to accel-
erate the accuracy and rate of convergence of the pro-
posed method. From (32), we have

where z(si, tj+1) and Zj+1
i  are exact and approximate solu-

tions, respectively. Assume �N ,M ⊂ �2N ,2M where �N ,M 
is the mesh obtained from the mesh intervals h and �t 
and �2N ,2M is the mesh obtained by bisecting the mesh 
intervals h and �t . Denoting the numerical solution 

(33)|Zj+1
i − z(si, tj+1)| ≤ C(h+�t),
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obtained with the mesh points �2N ,2M by Z̃j+1
i  . From 

(32), it is clear that for the mesh (si, tj+1) ∈ �N ,M

As s̃i+1 − s̃i = h̃ = h
2 for s̃i ∈ �2N and ̃tj+1 − t̃j = �̃t = �t

2  
for t̃j+1 ∈ �2M . For the mesh (s̃i, t̃j+1) ∈ �2N ,2M , we have

(34)Z
j+1
i − z(si, tj+1) ≤ C(h+�t)+ RN ,M , where RN ,M and R2N ,2M are the remainder terms 

with the truncation error of O(h2 +�t2) . Combin-
ing the inequalities in (34) and (35) gives us with 

(35)Z̃
j+1
i − z(si, tj+1) ≤ C(

h

2
+

�t

2
)+ R2N ,2M ,

Table 1 Comparison of eN,Mε,µ , (eN,Mε,µ )extr and ρN,M
ε,µ  for fixed µ = 10

−4 and varying ε for Example (1) with eN,Mε,µ  in [27] using Shishkin (S-) 
mesh and Bakhvalov-Shishkin (BS-) mesh

ε ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

AE

 10−4 1.1796e-04 3.0426e-05 8.5400e-06 2.3807e-06 6.1817e-07 1.5593e-07

1.9549 1.8330 1.8429 1.9453 1.9871 –

 10−6 1.1675e-04 3.0012e-05 7.6144e-06 1.9185e-06 4.8156e-07 1.2601e-07

1.9598 1.9787 1.9888 1.9942 1.9342 –

 10−8 1.1759e-04 3.0329e-05 7.7060e-06 1.9420e-06 4.8724e-07 1.1815e-07

1.9550 1.9766 1.9884 1.9948 2.0440 –

 10−10 1.1759e-04 3.0329e-05 7.7060e-06 1.9420e-06 4.8746e-07 1.2211e-07

1.9550 1.9766 1.9884 1.9884 1.9971 –

BE

 10−4 5.5308e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

0.9725 0.9860 0.9930 0.9965 0.9982 –

 10−6 5.5355e-03 2.8202e-03 1.4235e-03 7.1511e-04 3.5840e-04 1.7942e-04

0.9729 0.9864 0.9932 0.9966 0.9982 –

 10−8 5.5364e-03 2.8214e-03 1.4244e-03 7.1564e-04 3.5869e-04 1.7956e-04

0.9725 0.9861 0.9930 0.9965 0.9983 –

 10−10 5.5364e-03 2.8214e-03 1.4244e-03 7.1564e-04 3.5869e-04 1.7956e-04

0.9725 0.9861 0.9930 0.9930 0.9983 –

S-mesh [27]

 10−4 2.8183e-03 1.4253e-03 7.1638e-04 3.5904e-04 1.7973e-04 –

0.9835 0.9925 0.9965 0.9983 0.9992

 10−6 2.8274e-03 1.4272e-03 7.1717e-04 3.5952e-04 1.7999e-04 –

0.9863 0.9927 0.9962 0.9981 0.9991

 10−8 2.8287e-03 1.4280e-03 7.1748e-04 3.5961e-04 1.8002e-04 –

0.9860 0.9930 0.9965 0.9982 0.9991

 10−10 2.8286e-03 1.4280e-03 7.1747e-04 3.5960e-04 1.8002e-04 –

0.9861 0.9930 0.9965 0.9982 0.9991

BS-mesh [27]

 10−4 1.9776e-03 9.9679e-04 5.0025e-04 2.5059e-04 1.2544e-04 –

0.9892 0.9946 0.9973 0.9986 0.9993

 10−6 1.9789e-03 9.9691e-04 5.0033e-04 2.5064e-04 1.2544e-04 –

0.9891 0.9945 0.9973 0.9986 0.9993

 10−8 1.9789e-03 9.9691e-04 5.0033e-04 2.5064e-04 1.2544e-04 –

0.9891 0.9945 0.9973 0.9981 0.9993

 10−10 1.9789e-03 9.9691e-04 5.0033e-04 2.5064e-04 1.2544e-04 –

0.9891 0.9945 0.9973 0.9986 0.9993
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Table 2 Comparison of (eN,M), (eN,M)extr , ρN,M , and (ρN,M)extr for Example (1) with [26] using µ = 10
−3

N = 32 64 128 256 512 1024
M = 8 16 32 64 128 256

AE

 eN,M 1.9905e-02 1.0684e-02 5.5440e-03 2.8252e-03 1.4263e-03 7.1660e-04

 ρN,M 0.8977 0.9465 0.9726 0.9861 0.9930 –

In [26]

 eN,M 4.3705e-02 1.6704e-02 7.3802e-03 3.7406e-03 1.8967e-03 9.5511e-04

 ρN,M 1.3876 1.1785 0.9803 0.9797 0.9898 –

Table 3 Comparison of (eN,M), (eN,M)extr , ρN,M , and (ρN,M)extr for Example (1) with [26] using µ = 10
−9

N = 32 64 128 256 512 1024
M = 8 16 32 64 128 256

AE

 (eN,M)extr 1.7326e-03 5.0411e-04 1.3530e-04 3.5089e-05 8.9410e-06 2.2556e-06

 (ρN,M)extr 1.7811 1.8976 1.9471 1.9725 1.9869 –

BE

 eN,M 1.9856e-02 1.0659e-02 5.5315e-03 2.8189e-03 1.4231e-03 7.1502e-04

 ρN,M 0.8975 0.9463 0.9725 0.9861 0.9930 –

In [26]

 eN,M 4.3817e-02 1.6750e-02 7.4019e-03 3.7490e-03 1.9008e-03 9.5719e-04

 ρN,M 1.3873 1.1781 0.9813 0.9799 0.9898 –

Table 4 eN,Mε,µ , (eN,Mε,µ )extr , ρN,M
ε,µ  and 

(

ρN,M
ε,µ

)extr
 for µ = 10

−6 and varying ε for Example (2)

ε ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

AE

 10−4 2.2712e-05 1.0185e-05 6.9936e-06 2.1124e-06 5.6980e-07 1.4413e-07

1.1570 0.5423 1.7272 1.8904 1.9831 –

 10−6 2.2714e-05 6.6067e-06 1.7924e-06 4.6775e-07 1.1961e-07 4.2250e-08

1.7816 1.8820 1.9381 1.9674 1.5013 –

 10−8 2.2714e-05 6.6067e-06 1.7924e-06 4.6775e-07 1.1962e-07 3.0249e-08

1.7816 1.8820 1.9381 1.9673 1.9835 –

 10−10 2.2714e-05 6.6067e-06 1.7924e-06 4.6775e-07 1.1961e-07 3.0249e-08

1.7816 1.8820 1.9381 1.9674 1.9834 –

BE

 10−4 1.1968e-03 6.0516e-04 3.0384e-04 1.5225e-04 7.6202e-05 3.8121e-05

0.9838 0.9940 0.9969 0.9985 0.9992 –

 10−6 1.2014e-03 6.0665e-04 3.0454e-04 1.5260e-04 7.6376e-05 3.8206e-05

0.9858 0.9942 0.9969 0.9986 0.9993 –

 10−8 1.2014e-03 6.0663e-04 3.0453e-04 1.5260e-04 7.6376e-05 3.8207e-05

0.9858 0.9942 0.9968 0.9986 0.9993 –

 10−10 1.2014e-03 6.0663e-04 3.0453e-04 1.5260e-04 7.6376e-05 3.8205e-05

0.9858 0.9942 0.9968 0.9986 0.9993 –
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z(si, tj+1)− (2Z̃
j+1
i − z(si, tj+1)) ≤ C(h2 +�t2) , which 

yields that

is also an extrapolated numerical solution. Therefore, we 
have the error bound for extrapolated solution summa-
rized in the theorem as follows.

Theorem  4 Let zj+1
i  be the solution to the continuous 

problem (1) and (2) and (Zj+1
i )extr be the extrapolated 

solution. Then, the new error bound takes the form

Proof The proof is given in [21].   �

Therefore, using Richardson extrapolation, first-order 
uniformly convergent method is changed into second-
order uniformly convergent. Thus, the proposed method 
is second-order convergent.

(36)(Z
j+1
i )extr = 2Z̃

j+1
i − Z

j+1
i ,

sup
0<ε≤1

max
0≤i≤N ;0≤j≤M

|(Zj+1
i )extr − z(si, tj+1)| ≤ C((�t)2 + h2).

Test examples, numerical computations 
and discussions
In this section, we carry out numerical experiments to 
corroborate the performance of the proposed method 
with the theoretical results discussed in the previous sec-
tions. Since the exact solution for the Examples (1) and 
(2) are not available, we use the double mesh principle to 
calculate maximum absolute errors, for each (ε,µ) , using 
the following formula

before extrapolation (BE) and after extrapolation (AE), 
we use the formula

where ZN ,M(si, tj) is the numerical solution with (N, M) 
mesh points and Z2N ,2M(si, tj) is the numerical solu-
tion at the finer mesh with (2N, 2M) mesh points before 
extrapolation (BE). The numerical solutions after extrap-
olation (AE) are (ZN ,M)extr(si, tj) using the mesh points 
(N,  M) with mesh sizes h and �t and (Z2N ,2M)extr(si, tj) 

eN ,M
ε,µ = max

0≤i≤N ;t∈[0,T ]

∣

∣ZN ,M(si, tj)− Z2N ,2M(si, tj)
∣

∣,

(eN ,M
ε,µ )extr = max

0≤i≤N ;t∈[0,T ]

∣

∣(ZN ,M)extr(si, tj)− (Z2N ,2M)extr(si, tj)
∣

∣,

Table 5 Comparison of (eN,M), (eN,M)extr , ρN,M , and (ρN,M)extr for Example (2) with [26] using using µ = 10
−3

N = 32 64 128 256 512 1024
M = 8 16 32 64 128 256

AE

 (eN,M)extr 2.0431e-04 6.9968e-05 2.7254e-05 7.9009e-06 3.5478e-06 4.4385e-06

 (ρN,M)extr 1.5460 1.3602 1.7864 1.7355 0.9035 –

BE

 eN,M 4.5677e-03 2.3673e-03 1.2057e-03 6.0797e-04 3.0526e-04 1.5295e-04

 ρN,M 0.9482 0.9734 0.9878 0.9940 0.9970 –

In [26]

 eN,M 1.1161e-02 5.1087e-03 2.4749e-03 1.2214e-03 6.0706e-04 3.0264e-04

 ρN,M 1.1274 1.0455 1.0188 1.0086 1.0042 –

Table 6 Comparison of (eN,M), (eN,M)extr , ρN,M , and (ρN,M)extr for Example (2) with [26] using µ = 10
−9

N = 32 64 128 256 512 1024
M = 8 16 32 64 128 256

AE

 eN,M 4.5780e-03 2.3685e-03 1.2040e-03 6.0686e-04 3.0462e-04 1.5261e-04

 ρN,M 0.9507 0.9761 0.9884 0.9944 0.9972 –

In [26]

 eN,M 1.1100e-02 5.0838e-03 2.4640e-03 1.2162e-03 6.0457e-04 3.0142e-04

 ρN,M 1.1265 1.0449 1.0185 1.0084 1.0041 –
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using the mesh points (2N, 2M) with mesh sizes h2 and �t
2  . 

The (ε,µ)-uniform errors before and after extrapolation 
were calculated using the following formulas, respectively

Furthermore, we compute the numerical rate of conver-
gence before and after extrapolation with the following 
formulas, respectively

eN ,M = max
ε,µ

eN ,M
ε,µ and (eN ,M)extr = max

ε,µ
(eN ,M

ε,µ )extr .

The (ε,µ)-uniform rate of convergence before and after 
extrapolation were calculated using the following formu-
las, respectively

ρN ,M
ε,µ = log2

(

eN ,M
ε,µ

e2N ,2M
ε,µ

)

and (ρN ,M
ε,µ )extr = log2

(

(eN ,M
ε,µ )extr

(e2N ,2M
ε,µ )extr

)

.

ρN ,M = max
ε,µ

ρN ,M
ε,µ and ρ

N ,M
extr = max

ε,µ
(ρN ,M

ε,µ )extr .

Table 7 Comparison of eN,Mε,µ , (eN,Mε,µ )extr , ρN,M
ε,µ  , (eN,M)extr and (ρN,M)extr for ǫ = 10

−4 and varying µ for Example (1) with [27]

µ ↓ N = 32 64 128 256 512 1024
M = 32 64 128 256 512 1024

AE

 10−4 1.1796e-04 3.0426e-05 8.5400e-06 2.3807e-06 6.1817e-07 1.5593e-07

1.9549 1.8330 1.8429 1.9453 1.9871 –

 10−6 1.1798e-04 3.0430e-05 8.5160e-06 2.3728e-06 6.1533e-07 1.5530e-07

1.9550 1.8372 1.8436 1.9472 1.9863

 10−8 1.1798e-04 3.0430e-05 8.5160e-06 2.3728e-06 6.1533e-07 1.5530e-07

1.9550 1.8372 1.8436 1.9472 1.9863

 10−10 1.1798e-04 3.0430e-05 8.5160e-06 2.3728e-06 6.1533e-07 1.5530e-07

1.9550 1.8372 1.8436 1.9472 1.9863

 (eN,M)extr 1.1798e-04 3.0430e-05 8.5160e-06 2.3728e-06 6.1533e-07 1.5530e-07

 (ρN,M)extr 1.9550 1.8372 1.8436 1.9472 1.9863 –

BE

 10−4 5.5308e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

0.9725 0.9860 0.9930 0.9965 0.9982 –

 10−6 5.5307e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

0.97243 0.98599 0.99300 0.99647 0.99823

 10−8 5.5308e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

0.97243 0.98599 0.99300 0.99647 0.99823

 10−10 5.5308e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

0.97243 0.98599 0.99300 0.99647 0.99823

 eN,M 5.5308e-03 2.8187e-03 1.4231e-03 7.1501e-04 3.5838e-04 1.7941e-04

 ρN,M 0.97243 0.98599 0.99300 0.99647 0.99823

S-mesh [27]

 eN,M 2.8183e-3 1.4253e-3 7.1638e-4 3.5904e-4 1.7973e-4 –

 ρN,M 0.9835 0.9925 0.9965 0.9983 0.9992 –

B-mesh [27]

 eN,M 1.9653e-3 9.9001e-4 4.9686e-4 2.4891e-4 1.2531e-4 –

 ρN,M 0.9892 0.9946 0.9973 0.9986 0.9901 –
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Example 1 Consider singularly perturbed two-parame-
ter parabolic problem [26, 27]

Example 2 Consider singularly perturbed two-parame-
ter parabolic problem [26, 27]

The computed (eN ,M
ε,µ ), (eN ,M

ε,µ )extr , (eN ,M), (eN ,M)extr ,

ρN ,M
ε,µ  , (ρN ,M

ε,µ )extr ρN ,M , and (ρN ,M)extr for Examples (1) 
and (2) are tabulated in Tables  1, 2, 3, 4, 5, 6, 7 and 8 
for different values of ε,µ and mesh points. From these 
tables, one can observe that the results obtained after 
extrapolation provides more accurate results obtained 
before extrapolation and results in [26, 27]. From the 











ε
∂2z

∂s2
+ µ(1+ s)

∂z

∂s
− z(s, t)−

∂z

∂t
= −z(s, t − 1)+ 16s2(1− s2), (s, t) ∈ (0, 1)× (0, 2],

z(s, t) = 0, (s, t) ∈ (0, 1)× (−1, 0],
z(0, t) = 0, z(1, t) = 0, t ∈ (0, 2].



















ε
∂2z

∂s2
+ µ(1+ s(1− s)+ t2)

∂z

∂s
− (1+ 5st)z(s, t)−

∂z

∂t
= −z(s, t − 1)+ s(1− s)(et − 1),

(s, t) ∈ (0, 1)× (0, 2],
z(s, t) = 0, (s, t) ∈ (0, 1)× (−1, 0],
z(0, t) = 0, z(1, t) = 0, t ∈ (0, 2].

table of values, we deduce that when the mesh points 
increases the maximum absolute errors decreases. 
Numerical simulation for Examples (1 and 2) are dis-
played in Figs. (1 and 2), respectively. From these fig-
ures, we observe that as (ε,µ) goes very small a twin 
boundary layers are created at s = 0 and s = 1 . For a 
visual understanding of the theoretical order of con-
vergence graphically, the maximum absolute errors for 
Examples (1) and (2) are plotted using log-log scale in 
Figs. (3 and 4), respectively.

Conclusion
In this study, a robust numerical method for the two-
parametric singularly perturbed time-delayed parabolic 
problem on a uniform mesh is presented. The problem is 
discretized by an implicit Euler method in the time vari-
able and the non-standard finite difference method in the 
space variable. The method is analyzed for parameter 
uniform convergence. To boost the accuracy, the Rich-
ardson extrapolation technique has been applied. The 
numerical solutions displayed in the Tables show that 
the present method is parameter uniform convergence of 
second-order and it agrees with the theoretical order of 
convergence. The performance of the proposed method 
is examined by comparing the results with those of previ-
ous studies. It has been found that the proposed scheme 
provides more accurate and stable results. To substanti-

ate the suitability of the proposed method, graphs have 
been plotted for the two examples by taking different val-

ues of the parameters ε and µ . The drawback of the pro-
posed method is that difficult to apply to higher-order 
singular perturbation problems. The proposed method 
is easy to implement and, with a little modification, can 
easily be extended to nonlinear, discontinuous data, and 
other families of the problem under consideration.

Table 8 Comparison of eN,Mε,µ , (eN,Mε,µ )extr and ρN,M
ε,µ  for ǫ = 10

−4 
and varying µ for Example (2)

µ ↓ N = 32 64 128 256 512
M = 32 64 128 256 512

AE

 10−4 3.8567e-05 9.5725e-06 2.3842e-06 6.6341e-07 1.7709e-07

2.0104 2.0054 1.8455 1.9054 –

 10−6 3.8555e-05 9.5698e-06 2.3835e-06 5.9476e-07 1.4855e-07

2.0104 2.0054 2.0027 2.0014 –

 10−8 3.8555e-05 9.5698e-06 2.3836e-06 5.9476e-07 1.4853e-07

2.0104 2.0053 2.0028 2.0016 –

 10−10 3.8555e-05 9.5698e-06 2.3836e-06 5.9476e-07 1.4853e-07

2.0104 2.0053 2.0028 2.0016 –

BE

 10−4 7.5295e-03 3.7840e-03 1.8968e-03 9.4960e-04 4.7510e-04

0.99264 0.99634 0.99818 0.99909 –

 10−6 7.5295e-03 3.7840e-03 1.8968e-03 9.4960e-04 4.7510e-04

0.99264 0.99634 0.99818 0.99909 –

 10−8 7.5295e-03 3.7840e-03 1.8968e-03 9.4960e-04 4.7510e-04

0.99264 0.99634 0.99818 0.99909 –

 10−10 7.5295e-03 3.7840e-03 1.8968e-03 9.4960e-04 4.7510e-04

0.99264 0.99634 0.99818 0.99909 –
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Fig. 1 3-D view of the numerical solution profiles for Example 1 at N = 64 = M
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Fig. 2 3-D view of the numerical solution profiles for Example (2) at N = 64 = M

Fig. 3 Loglog plot of the maximum point-wise errors at µ = 10
−4 for Example (1)
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