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Introduction
Artificial sweeteners are food additives that provide a 
sweet taste without adding additional calories. Aspar-
tame (l-aspartyl l-phenylalanine methyl ester) is a type 
of artificial sweetener discovered by James Schlatter in 
1965 [1]. It is one of the most used artificial sweeteners 
worldwide, with an annual consumption of 16,000 tons 
[2]. Based on the safety evaluation of aspartame, the 
Food and Drug Administration set its maximum daily 
intake (ADI) at 50  mg/kg/day. The European Union set 
it at 40  mg/kg/day [3, 4]. Aspartame is present in vari-
ous foods consumed daily, and its consumption is likely 
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Abstract
Background and objective  Aspartame (l-aspartyl l-phenylalanine methyl ester) is an artificial sweetener widely 
used as a sugar substitute. There are concerns regarding the effects of high aspartame doses on the kidney owing to 
oxidative stress; however, whether the maximum allowed dose of aspartame in humans affects the kidneys remains 
unknown. Therefore, in this study, we investigated whether the maximum allowed dose of aspartame in humans 
affects the kidneys.

Methods  In this study, animals were fed a folate-deficient diet to mimic human aspartame metabolism. Eight-week-
old ICR mice were divided into control (CTL), 40 mg/kg/day of aspartame-administered (ASP), folate-deficient diet 
(FD), and 40 mg/kg/day of aspartame-administered with a folate-deficient diet (FD + ASP) groups. Aspartame was 
administered orally for eight weeks. Thereafter, we evaluated aspartame’s effect on kidneys via histological analysis.

Results  There were no differences in serum creatinine and blood urea nitrogen levels between the CTL and ASP 
groups or between the FD and FD + ASP groups. There was no histological change in the kidneys in any group. The 
expression of superoxide dismutase and 4-hydroxy-2-nonenal in the kidney did not differ between the CTL and ASP 
groups or the FD and FD + ASP groups.

Conclusion  Our findings indicate that the allowed doses of aspartame in humans may not affect kidney function or 
oxidative states.
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to continue rising. However, there are concerns regard-
ing the safety of aspartame in obesity, diabetes mellitus, 
children and fetuses, autism, neurodegeneration, phenyl-
ketonuria, allergies, and skin problems, as well as its car-
cinogenic properties and genotoxicity [1].

The side effects of aspartame on the kidneys have been 
investigated in animal experiments and reported to cause 
damage to the glomeruli and renal tubules, as well as 
renal dysfunction [5]. The mechanism through which 
aspartame affects the kidneys is thought to involve its 
metabolites. Once ingested, aspartame is metabolized to 
aspartic acid, phenylalanine, and methanol in a 50:40:10 
ratio [6]. Methanol is further broken down into formalde-
hyde and formic acid [7], which cause a decrease in anti-
oxidant substances and an increase in oxidative stress, 
potentially leading to kidney damage [5, 8]. Rodents 
metabolize methanol quickly because of the abundance 
of folic acid in their livers and may have different toler-
ances to aspartame than humans [9]. Therefore, in most 
animal experiments, the effects of aspartame on kidneys 
have been investigated at doses higher than the maxi-
mum doses allowed in humans. However, to examine 
aspartame nephrotoxicity in humans more thoroughly, 
conducting studies under conditions that closely mimic 
human aspartame metabolism is necessary.

Therefore, in this study, we used mice fed a folate-defi-
cient diet to examine whether the allowed doses of aspar-
tame in humans affect the kidneys.

Materials and methods
Animals
Animal experiments were conducted using eight-week-
old male ICR mice (Japan SLC Inc., Shizuoka, Japan). The 
mice were housed in standard rodent cages in a light- and 
temperature-controlled room at the Biomedical Research 
Center, Center for Frontier Life Sciences, Nagasaki Uni-
versity (Nagasaki, Japan), and had free access to labora-
tory food and tap water. The room was maintained at a 
temperature of 21–25  °C (without sudden changes) and 
a humidity of 40–70% according to the facility’s regula-
tions. The lighting in the animal housing room was set to 
turn on at 7:00 AM and turn off at 7:00 PM. The experi-
mental protocol was evaluated by the Animal Care and 
Use Committee of Nagasaki University and approved by 
the President of Nagasaki University (Approval number: 
2005011627-7).

Animal experimental protocol
In this study, the mice were fed a folate-deficient diet to 
mimic human methanol metabolism. A folate-deficient 
l-amino acid rodent diet supplemented with 1% succinyl 
sulfathiazole (Cat. no. 517777; Dyets, Inc., Bethlehem, 
PA, USA) was used. Previous reports have confirmed 
that plasma and liver folic acid levels decrease when ICR 

mice are fed this diet [10]. In our pilot study, we con-
firmed that plasma folic acid levels were depleted in ICR 
mice after maintenance on a folate-deficient diet for four 
weeks (Supplemental Fig. 1).

The ICR mice were divided into four groups: (1) the 
control group (CTL), which included mice orally admin-
istered with 0.008  ml/g saline and fed a normal diet 
(n = 5); (2) aspartame group (ASP), which included mice 
orally administered with 40  mg/kg aspartame dissolved 
in saline and fed a normal diet (n = 5); (3) folate-deficient 
group (FD), which included mice orally administered 
with 0.008  ml/g saline and fed a folate-deficient diet 
(n = 5); and (4) folate-deficient with aspartame-treated 
group (FD + ASP), which included mice orally adminis-
tered with 40  mg/kg aspartame dissolved in saline and 
fed a folate-deficient diet (n = 6). A folate-deficient diet 
was initiated four weeks before aspartame administration 
(Fig. 1). Eight weeks after treatment, 24-hour urine sam-
ples were collected, and body weights were measured. 
Subsequently, blood samples and kidneys were collected 
under anesthesia, and the mice were sacrificed. Ani-
mals were sacrificed by giving an overdose of isoflurane 
in accordance with regulations of animal experiments 
at Nagasaki University. Blood samples were collected 
in blood collection tubes without heparin. Serum was 
obtained through centrifugation (3000  rpm) of blood 
samples at 4 °C for 5 min (Cat. no. RL-120; Tomy Seiko, 
Tokyo, Japan). Serum creatinine (Cr), serum blood urea 
nitrogen (BUN), urinary N-acetyl-beta-glucosaminidase 
(NAG), urinary protein, and urinary Cr levels were mea-
sured using an enzymatic method by a commercial labo-
ratory (SRL Inc, Tokyo, Japan). Dissected kidneys were 
fixed with 4% paraformaldehyde in phosphate-buffered 
saline (PBS; pH 7.4) immediately after sampling and 
embedded in paraffin. For histological analysis of the kid-
ney, 3-µm-thick paraffin-embedded tissues were stained 
with a periodic acid-Schiff stain.

Immunohistochemistry
Paraffin-embedded tissue sections were immunohis-
tochemically examined using an indirect method. The 
following antibodies were used for immunohistochem-
istry: mouse anti-4-hydroxy-2-nonenal (4-HNE; 1:50; 
MHN-100P; JaICA, Shizuoka, Japan), which was used 
as an oxidative stress marker, and rabbit anti-superoxide 
dismutase 2 (SOD2; 1:100; ab13534; Abcam, Cambridge, 
UK), which was used as an antioxidant marker.

After deparaffinization, the sections were treated in an 
autoclave for 10 min at 120 °C for antigen retrieval. The 
sections were then treated with 0.3% H2O2 in methanol 
for 20 min to inactivate endogenous peroxidase activity. 
Thereafter, the sections were incubated for 30 min with a 
blocking solution at room temperature (RT). The sections 
were then incubated with the primary antibody diluted 
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in the blocking solution overnight at 4 °C. Sections were 
then incubated with horseradish peroxidase-conjugated 
goat anti-rabbit immunoglobulin (P0448; Dako, Car-
pinteria, CA) or goat anti-mouse immunoglobulin anti-
bodies (P0447; Dako, Carpinteria, CA) diluted at 1:100 
or 1:200 for 1 h at RT. Reaction sites were visualized by 
treating the sections with H2O2 and 3,3′-diaminoben-
zidine tetrahydrochloride. After counterstaining with 
hematoxylin, the sections were dehydrated and mounted. 
For all specimens, negative controls were prepared using 
normal IgG instead of the primary antibody.

Histological analysis
The image was transformed into a matrix of 1440 × 1024 
pixels and viewed at 200 × or 400 × magnification using 
a light microscope (Nikon ECLIPSE Ci-L; Nikon, Tokyo, 
Japan). For semiquantitative evaluation of the positive 
areas for SOD and 4-HNE staining, DAB-positive areas 
were analyzed using the ImageJ FIJI software [11]. Five 
areas were selected for each sample, and the positive 
areas were determined at a × 200 magnification.

Statistical analyses
Data are expressed as the mean ± standard error. Dif-
ferences between the groups (CTL vs. ASP or FD vs. 
FD + ASP) were examined for statistical significance 
using the Student’s t-test. All statistical analyses were 
performed using JMP version 16 software (SAS Institute 
Inc., Cary, NC, USA). Statistical significance was set at 
p < 0.05.

Results
Aspartame did not induce renal histological changes and 
renal dysfunction in mice
After eight weeks of aspartame administration, mice body 
weights were similar between the CTL and ASP groups 
and between the FD and FD + ASP groups (Fig.  2A). 
Serum BUN and Cr levels were also similar between the 
CTL and ASP groups and between the FD and FD + ASP 
groups (Fig.  2B and C). Furthermore, we analyzed uri-
nary NAG as a marker of renal tubular injury and urinary 
protein as a marker of glomerular damage. Urinary NAG 
levels were similar between the CTL and ASP groups and 
between the FD and FD + ASP groups (Fig. 2D), and uri-
nary protein levels were similar between the CTL and 
ASP groups but tended to be higher in the FD + ASP 
group than in the FD group (p = 0.06). However, urinary 
protein levels in the FD and FD + ASP groups were much 
lower than those in the CTL group, which was a normal 
control (Fig. 2E). In the ASP and FD + ASP groups, which 
were administered aspartame, histological changes in the 
glomerulus and interstitium were not observed and were 
similar to those in the CTL group (Fig. 3). These results 
suggest that an eight-week-long administration of 40 mg/
kg aspartame did not induce renal histological changes or 
renal dysfunction in ICR mice.

Aspartame did not induce renal oxidative stress in mice
Although renal dysfunction and histological changes 
were not observed in the ASP and FD + ASP groups, 

Fig. 1  Experimental time course. CTL = control; ASP = aspartame administration; FD = folate-deficient diet; FD + ASP = aspartame-administration with a 
folate-deficient diet
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previous studies have shown that aspartame reduces 
renal antioxidant capacity and increases renal oxidative 
stress. Therefore, we performed immunohistochemi-
cal analysis of SOD and 4-HNE as indicators of antioxi-
dant capacity and oxidative stress, respectively. SOD was 
mainly expressed in renal tubular cells, and its expression 

levels were similar between the CTL and ASP groups 
and between the FD and FD + ASP groups (Fig.  4A-D 
and I). In contrast, the expression of 4-HNE was weakly 
expressed in renal tubular cells, and its expression lev-
els were similar between the CTL and ASP groups and 
between the FD and FD + ASP groups (Fig. 4E-H and J). 

Fig. 3  Evaluation of morphological changes in the kidneys. (A-H) No histological changes were observed in the glomerulus and tubulointerstitial lesions 
in any group. (A-H) Periodic acid-Schiff stain of the kidney at (A-D) ×200 and (E-H) ×400 magnifications. Mouse test groups: CTL = control; ASP = aspar-
tame-administered; FD = folate-deficient diet; FD + ASP = aspartame-administered with folate-deficient diet

 

Fig. 2  Evaluation of body weight, renal function, and urinary biomarkers. (A) Body weights of mice after an eight-week-long administration of aspartame. 
Body weights measured were similar between the CTL and ASP groups and between the FD and FD + ASP groups. (B and C) Serum blood urea nitrogen 
(BUN) and creatinine (Cr) levels of mice after eight weeks of aspartame administration. Both serum BUN and Cr levels were similar between the CTL and 
ASP groups and between the FD and FD + ASP groups. (D and E) Urinary N-acetyl-beta-glucosaminidase (NAG) and protein levels of mice after eight 
weeks of aspartame administration. Urinary NAG levels were similar between the CTL and ASP groups and between the FD and FD + ASP groups. Urinary 
protein levels were similar between the CTL and ASP groups, but higher levels were observed in the FD + ASP group than in the FD group. (A-E) n = 5 ∼ 6, 
each group. *p < 0.05; Student’s t-test; error bars indicate the mean ± standard error. Mouse test groups: CTL = control; ASP = aspartame-administered; 
FD = folate-deficient diet; FD + ASP = aspartame-administered with folate-deficient diet
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These results suggest that an eight-week-long administra-
tion of 40 mg/kg aspartame does not reduce renal anti-
oxidant capacity or induce oxidative stress in ICR mice.

Discussion
In the present study, no histological changes in mouse 
kidneys or renal dysfunction were observed when aspar-
tame was administered at 40 mg/kg/day for eight weeks, 
including in mice that were fed a folic acid-deficient diet. 
Aspartame also did not induce oxidative stress in the kid-
neys. These results differ from those of previous animal 
studies.

Many animal studies have reported that aspartame 
affects kidneys [12–26]. These studies showed impaired 
renal function, decreased antioxidant levels, increased 
oxidative stress in renal tissue, and histological changes 
in the glomeruli, tubules, and interstitium. In particular, 
the reduction of antioxidants such as SOD is involved 
in renal oxidative stress [12, 18]. However, many stud-
ies have administered aspartame at doses far above the 
human ADI of 40–50  mg/kg/day [13, 15, 19–26]. Ani-
mal experiments using high doses of aspartame are use-
ful in considering the possible mechanism of its toxicity; 

however, whether aspartame is associated with renal dys-
function in a clinical setting remains unclear.

In this study, we investigated the effects of using aspar-
tame at 40  mg/kg/day on mouse kidneys, which is the 
ADI set by the European Union [4]. Previous research 
has shown that the intake of aspartame by the general 
population falls below 50 mg/kg/day, and we determined 
40 mg/kg/day as a realistic value [27, 28]. This study dif-
fers from others in that the mice were fed a folic acid-
deficient diet. This is because, humans have less folate 
in the liver than rodents; thus, humans are more likely 
to metabolize methanol via an alternate pathway (the 
microsomal pathway) [9]. Many previous studies did not 
use folate deficiency models and may not mimic clinical 
settings. In this study, we examined the nephrotoxicity 
of aspartame under conditions closer to those of clini-
cal settings for dosage and folic acid deficiency. Overall, 
aspartame had no obvious effects on mouse kidneys, 
including antioxidative capacity (SOD) and oxidative 
stress (4-HNE).

However, a small number of animal studies have dem-
onstrated aspartame-induced renal damage using an 
approach similar to that used in the current study. For 

Fig. 4  Immunohistochemistry for superoxide dismutase and 4-hydroxy-2-nonenal in the kidney. (A-D) Immunohistochemical analysis of superoxide 
dismutase (SOD) in the kidney (×200 magnification). SOD expression levels were similar between the CTL and ASP groups and between the FD and 
FD + ASP groups. (I) Bar graph showing the SOD-positive area. (E-H) Immunohistochemical analysis of 4-hydroxy-2-nonenal (4-HNE) in the kidney (×200 
magnification). 4-HNE expression levels were similar between the CTL and ASP groups and between the FD and FD + ASP groups. (J) Bar graph show-
ing the 4-HNE-positive area. (I and J) n = 5 ∼ 6, each group. *p < 0.05; Student’s t-test; error bars indicate the mean ± standard error. Mouse test groups: 
CTL = control; ASP = aspartame-administered; FD = folate-deficient diet; FD + ASP = aspartame-administered with folate-deficient diet
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example, Kumar et al. reported that the administration of 
40 mg/kg/day aspartame for 30 days to rats fed a folate-
deficient diet increased oxidative stress in the kidneys 
and serum Cr and BUN levels [17], which is inconsistent 
with our results. One of the differences in our study is 
the animal species used. Although many previous studies 
have used albino rats, we investigated the renal effects of 
aspartame in ICR mice. It cannot be ruled out that differ-
ences in the animals used in this study may have contrib-
uted to the differing results obtained in our study.

Furthermore, histological findings by Gabr et al. 
revealed glomerular and renal tubular damage in rats 
treated with 20 mg/kg/day aspartame for 180 days [14]. 
The current study tested aspartame administration for 
eight weeks; thus, the effects of long-term aspartame 
administration cannot be ruled out. Although this study 
alone cannot completely disprove that aspartame harms 
the kidneys in a near-clinical setting, our results indicate 
that aspartame might not affect kidneys and is consistent 
with a clinical trial [29].

In conclusion, our results show that aspartame does not 
affect the kidneys, in contrast to previous animal studies. 
Although our results are consistent with those of clinical 
studies, further basic and clinical research is needed to 
confirm whether aspartame is safe for the kidneys.

Limitations
Although our study presents a different result from pre-
vious studies in that aspartame does not affect the kid-
neys and encourages consideration of its safety, it has 
several limitations. First, in this study, serum folate lev-
els were not measured in the FD + ASP groups; therefore, 
whether aspartame was administered in a folate-deficient 
state is unclear. However, in our pilot study, we con-
firmed that feeding mice a folate deficiency diet for four 
weeks resulted in deficient serum folate levels (Supple-
mental Fig. 1), consistent with previous results [10]. The 
FD + ASP group was fed a folate-deficient diet for four 
weeks before aspartame administration, indicating that 
aspartame was likely administered in a folate-deficient 
state. Second, we used immunohistochemistry to evalu-
ate oxidative stress, which may not have been easy to 
evaluate early or identify minor changes. Finally, we only 
confirmed the effects of aspartame on the kidneys, and 
it is unclear whether the aspartame doses tested are safe 
for other organs. Therefore, it cannot be concluded from 
this study alone that aspartame is safe for humans, and 
further research, including studies on organs other than 
the kidneys, is necessary.
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