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Introduction
According to current estimates nearly five billion people 
are using a social media service worldwide [1] represent-
ing a communication tool differing in context from clas-
sic face-to-face or digital communication from such as 
via e-mail [2] or videoconferences [3]. Differences of con-
text in social media platforms and offline lives might also 
result in differences in the perception of one’s own per-
son [4]. Most of the current operating social media plat-
forms run with a data business model, hence users do not 
pay with a monetary fee to use the service, but instead 
with their attention to ads and with their data [5]. In 
turn, the companies behind the social media services can 
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Abstract
Objective In the present work we investigate how individual differences in at least occasionally using distinct social 
media platforms is linked to social networks use disorder (SNUD) tendencies. A final sample of n = 2200 participants 
filled in the AICA-C-9 measure to get insights into individual differences in overuse of social media and participants 
also indicated which platforms they used at least once a month.

Results The analysis revealed a robust positive association between number of at least occasionally used social 
media apps and SNUD tendencies (r = .44, p < .001). Further, platforms differed in terms of their “addictive potential”, if 
one takes associations between frequency of distinct platforms use and SNUD tendencies as a proxy for this (and of 
course the actual descriptive statistics of the SNUD scale for the (non-)frequent user groups of the different platforms). 
In this regard, at least occasionally using some platforms (here Tumblr, Twitter and TikTok) was associated with highest 
SNUD tendencies. Moreover, largest differences in terms of effect sizes between the occasional and non-occasional 
user groups regarding SNUD scores could be observed for Instagram, WhatsApp, and TikTok. The present work bases 
on data from a larger project investigating associations between SNUD and tobacco use disorder.
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create profiles of their users to improve their business 
case around personalized ads [6]. For years, it has been 
discussed if people can get “addicted” to social media 
services [7]. Although this debate is not settled [8], one 
could take the position that an industry actively aiming 
at prolonging online time represents one of the causes of 
excessive social media use [9, 10]. Although social media 
addiction or social networks use disorder (SNUD) does 
not represent an official diagnosis now, scientists around 
the world often use an addiction framework to study 
overuse of social media [11]. In this context, they assess 
disordered social media use by asking people about the 
severity of symptoms which have been inspired by addic-
tion research [12]. Among these are loss of control, 
withdrawal, preoccupations, etc. Please note that recent 
research demonstrated that only a few of such addiction 
symptoms are associated with psychopathological ten-
dencies [13]. In addition, everyday use of digital media or 
devices should not be overpathologized as, for example, 
lined out in relation to gaming disorder [14]. To better 
distinguish between everyday behavior and pathology, 
theoretical underpinnings [15] and nosological criteria 
are of high importance. Most often, diagnostic criteria 
of Internet Gaming Disorder in the Diagnostic and Sta-
tistical Manual of Mental Disorders in its 5th revision 
(DSM-5; [16, 17]) or diagnostic requirements of Gaming 
Disorder in the 11th revision of the International Classifi-
cation of Diseases (ICD-11; World Health Organization)1; 
see also [18] have been adapted for this purpose.

Prominent scales used in the field to assess disordered 
social media use often assess general social media over-
use without a focus on distinct platforms [12, 19]. This 
said, recent research suggests that some platforms might 
elicit more disordered use tendencies than others [20], 
and might have a stronger impact on daily-life adversi-
ties [21]. One explanation for this is that platforms dif-
fer in their design and could therefore exert a different 
pull to come to the platform [22]. Studying several social 
media platforms in a single work might help to overcome 
biases in findings from studies focusing on single promi-
nent large networks such as Facebook [23]. Therefore, 
the present research asks study participants about their 
disordered general social networks use tendencies and 
in detail which of a longer list of social media platforms 
they use at least on a monthly level. This information is 
brought together to see if use of certain platforms goes 
along with elevated SNUD tendencies. We aim to inves-
tigate which use of social media services is related with 
highest SNUD tendencies to provide further insights into 
the potential addictive features of different platforms. 
Moreover, we analyze if more social media services are 

1 https://icd.who.int/browse/2024-01/mms/en#/http://id.who.int/icd/
entity/1448597234.

used by one person is related to higher SNUD tendencies 
as well.

Methods
Participants, data cleaning and questionnaire measures
An initial sample of N = 2219 participants could be 
recruited via a project website representing the start-
ing point for investigating associations between social 
media use and smoking (data of a small subsample of the 
present sample (about ¼) regarding the AICA-C-9 has 
been investigated in the context of smoking before [24]). 
The detailed methods and agenda of the overarching 
project(s) have been presented in recent works [25, 26].

Four participants were under 16 years and therefore 
were excluded, because the protocol foresaw 16 years and 
older as entry age for the present study. Further two par-
ticipants were excluded due to providing implausible age 
information. Thirteen participants were also excluded 
from the analysis being characterized as third gender. 
This group is unfortunately too small to run robust sta-
tistics on (the investigation of this group represents an 
important research topic though from our view).

The final sample consisted of N = 2200 participants with 
n = 1454 females (66,1%) and n = 746 males (33,9%). All 
participants provided insights into their smoking behav-
ior (smoker (33,1%), ex-smoker (14,3%) and non-smoker 
(52,5%- the smoking variables are not of relevance for 
the present project; again see analysis in a smaller sub-
sample here [24])2 and into their social media use dis-
order tendencies and what platforms they used at least 
occasionally. Therefore, we presented several messengers 
and platforms (Facebook and Facebook Messenger, Ins-
tagram, iMessage, Telegram, WhatsApp, Threema, Sig-
nal, Snapchat, TikTok, Twitter, Tumblr, Pinterest, Skype, 
other category). As one can see both social media and 
messenger platforms are mentioned in the above list, 
because messengers such as WhatsApp have social media 
features such as online status and according to a visible 
social media definition messengers would belong under 
the umbrella term social media [27]. A “yes/no” variable 
(at least occasionally/less than once a month use) for each 
platform was used. Usage of each platform at least once a 
month was indicated with a yes = 1 or less frequently with 
a no = 0. Further a variable was computed (a summed 
score of all at least occasionally used social media plat-
forms) to understand how many different social media 
products the study participants used frequently. A note: 
We have five participants (0,2%), who not reported to use 
any of the mentioned platforms recently. Nevertheless, 
it could be that they very seldom use these platforms. 

2  In this much larger sample, we could again observe that smokers were 
associated with lowest AICA-C-9 scores (here: 4,62 (SD = 2,55) compared to 
non-smokers (M = 4,91 (SD = 2.31)) and ex-smokers (M = 5,19 (SD = 2,38)). 
ANCOVA revealed a significant effect (F(2,2197) = 6,858, p = .001).

https://icd.who.int/browse/2024-01/mms/en#/http://id.who.int/icd/entity/1448597234
https://icd.who.int/browse/2024-01/mms/en#/http://id.who.int/icd/entity/1448597234
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We did not exclude them from the analysis (for sure this 
group is very small and will not have a large impact).

Individual differences in SNUD tendencies were 
assessed via the AICA-C-9 questionnaire (the original 
AICA-S scale with English wording can be found here 
[28]; please note that in this original paper the wording 
gaming was used, and in the present work the focus was 
on social networks). The shortened AICA-C-9 question-
naire consists of twelve items (one presented in an adap-
tive way), which can be used to assess nine symptom 
criteria of SNUD developed against the Internet Gam-
ing Disorder framework in DSM-5 [29]. Higher scores 
indicate higher SNUD tendencies. Cronbach’s α for the 
nine symptoms was 0.76 and therefore satisfying. Finally, 
all participants provided insights into what operation 
system they used on their phones (n = 1052 used iOS 
(47,8%), n = 1137 used Android (51,7%) and n = 11 (0,5%) 
used other operation systems.

Statistical analyses
As one can see the key variables AICA-C-9 and the num-
ber of social media products used at least occasionally 
are rather normally distributed and therefore parametric 
tests were applied (also due to the fact that the sample is 
very large; see Fig. 1).

A Pearson correlation between AICA-C-9 and num-
ber of social media products used provide insights into 
a potential association between both variables. Addition-
ally, individual t-tests are presented showing how (not) at 
least occasionally use of/using each platform is linked to 
the AICA-C-9 scores (contrast between occasional and 
non-occasional users of distinct social media platforms). 
As exploratory analysis, also associations between the 
operation system variable and social media use was 
investigated. For the analysis SPSS 29.0.1.0 and Jamovi 

2.4.8.0 were used. As social media overuse - according 
to some studies - is related to age and gender, we also 
checked if these variables need to be controlled for [7]. 
The data underlying this work can be found here: https://
osf.io/9j8g3/.

Results
Age, gender and SNUD tendencies/number of social media 
apps used
Analysis suggests that significant differences between 
men and women regarding SNUD tendencies (AICA-
C-9 scores) could be observed (but effect size is 
weak). Women had slightly higher scores than men 
(t(1368,102) = 2.107, p = .035; women: M = 4.94 (SD = 2.31) 
vs. men: M = 4.70 (SD = 2.58); Cohen’s d = 0.098). Women 
and men did not significantly differ regarding the number 
of at least occasionally use of apps with women having 
higher scores than men (t(1329,923) = 1.18, p = .264; females: 
M = 5.35 (SD = 2.01) vs. males: M = 5.24 (SD = 2.31)). 
Against this background we did not control for gender 
in the following analysis (the readers can use the data for 
further analysis, if they are interested, because they are 
shared open access). Age was robustly and negatively 
associated with AICA-C-9 scores (r = − .241, p < .001) and 
with number of at least occasionally social media apps 
used (r = − .225, p <. 001). Hence younger age was asso-
ciated with more SNUD tendencies and with a higher 
number of at least occasionally used social media apps. 
Therefore, we also ran a partial correlation between 
AICA-C-9 scores and number of social media apps at 
least occasionally used controlling for age. Correlations 
are presented on two-sided level.

Fig. 1 Distribution of at least occasionally used social media apps and AICA-C-9 scores (SNUD tendencies)

 

https://osf.io/9j8g3/
https://osf.io/9j8g3/
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Further insights into social media use
Descriptive statistics revealed how many percent of the 
users stated to use a certain social media product at least 
occasionally (at least once a month; see Table  1). The 
most often used app was WhatsApp (97%), the least often 
used apps were Threema/Tumblr (5%).

On average, participants reported to use a mean of 5.31 
apps at least occasionally (SD = 2.12) and a mean AICA-
C-9 score of 4.86 (SD = 2.41). A moderate association 
could be observed between number of at least occasion-
ally social media apps used and the AICA-C-9 scores: 
r = .44, p < .001 (see for illustration Fig. 2). Controlling for 

age led to a slight reduction of the observed effect size: 
r = .41, p < .001.

Interestingly, we observed that for all platforms at 
least occasionally used was associated with descrip-
tively higher SNUD tendencies (AICA-C-9 scores) com-
pared to less-frequent use, except for Threema, where 
we observed the contrary patterns (although not signifi-
cant); see Table 2. Therefore, we created also a sum score 
for number of frequently used social media apps without 
Threema. Correlations did not really change then (r = .45, 
p < .001; controlling for age r = .41, p < .001).

On a descriptive level, highest SNUD tendencies could 
be observed in those reporting to at least occasionally 
use of Tumblr, Twitter, and TikTok. Largest differences in 
terms of effect sizes between the groups of at least occa-
sionally and less-frequent use of the different platforms 
could be observed for Instagram, WhatsApp, and TikTok.

Exploratory analysis: operation system and social media 
use
ANOVA revealed that the operation system was asso-
ciated both with the AICA-C-9 scores (F(2,2197) = 28,64, 
p < .001, eta2 = 0.025) and the number of at least occa-
sionally used social media apps (F(2,2197) = 46,08, p < .001, 
eta2 = 0.040). iOS users reported higher SNUD tenden-
cies (M = 5.26, SD = 2.32) than Android users (M = 4.49, 
SD = 2.43) followed with lowest scores in the others group 
(M = 4.36, SD = 2.16). Fittingly, iOS users reported also 
the highest number of at least occasionally used apps 
(M = 5.75, SD = 2.11) followed by Android users (M = 4.93, 
SD = 2.04) followed with number of at least occasionally 
used apps in the others group (M = 3.64, SD = 1.75).

Discussion
The present work aimed to give detailed insights into 
associations between frequent (at least occasionally) use 
of different social media apps and self-reported SNUD 
tendencies.

First, we observed that a larger number of at least occa-
sionally used social media apps correlated positively and 
moderately with higher SNUD tendencies. A reason for 
this might be that people prone to overusing social media 
either might prefer the consumption of different plat-
forms (offering for instance videos such as on TikTok vs. 
more still pictures such as on Instagram). On the other 
hand, using more platforms could also elicit a stronger 
pull towards social media in general, which can also lead 
to mechanisms that lead to continuous consumption, 
such as FoMO, being further reinforced across the vari-
ous platforms [22, 30, 31].

Second, we observed that at least occasionally use of 
some platforms was in particular associated with higher 
SNUD tendencies (highest scores for Tumblr, Twitter and 
TikTok), which fits with the idea that not all social media 

Table 1 Number of participants in % stating to use the 
presented platform at least once a month
Name of the platforms Number of participants 

in % stating to use the 
platform at least once 
a month (n in brackets)

Facebook and Facebook Messenger 55,1% (1213)
Instagram 80,4% (1769)
IMessage 26,0% (572)
Telegram 27,6% (607)
WhatsApp 97,0% (2135)
Threema 5,0% (109)
Signal 26,6% (586)
Snapchat 42,0% (925)
TikTok 43,9% (966)
Twitter 21,9% (482)
Tumblr 5,0% (109)
Pinterest 43,5% (957)
Skype 16,2% (356)
Others 41,0% (901)

Fig. 2 Scatterplot illustrating the associations between number of fre-
quently used social media apps and SNUD tendencies
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products are identical and that differences in the design 
of the apps could elicit different addictive tendencies 
towards the platform [20, 22]. In this context it should 
be mentioned that different platforms in the beginning of 
usage might elicit different habit formation giving way to 
addictive tendencies towards distinct social media plat-
forms [32]. A recent work further suggests “that while 
the underlying addiction pathways are similar between 
platforms the manifestation of maladaptive behavior and 
the drivers for usage intensity and problematic use are 
unique.“ [33].

Largest differences in terms of effect sizes between the 
groups could be observed for Instagram, WhatsApp, and 
TikTok. At this point, it is merely speculative as to why 

certain platforms may be more attractive or associated 
with a different addictive potential than others, future 
studies will need to examine the role played by certain 
design features, familiarity, algorithms and their speed 
of adaptation, as well as the content itself of the differ-
ent platforms [22, 34, 35]. Furthermore different plat-
forms attract different user groups [36], which could also 
explain differences in SNUD tendencies towards certain 
social media applications. To illustrate this: As a further 
analysis for the discussion, we investigated age differ-
ences between frequent and non-frequent TikTok users. 
At least occasionally users were much younger than 
less-frequent users (M = 28.30 (SD = 10.51) vs. M = 33.37 
(SD = 12.53) and it is also known that younger age goes 

Table 2 The descriptive statistics are presented for the AICA-C-9 scores depending on at least occasionally use vs. less-frequent use
Name of the platforms At least occasionally use Less-frequent use T-Test and effect size
Facebook and Facebook Messenger M = 5.09

(SD = 2.39)
M = 4.57
(SD = 2.40)

t(2198) = 5,099,
p < .001,
Cohen’s d = 0.219

Instagram M = 5.26
(SD = 2.18)

M = 3.19
(SD = 2.60)

t(585,382) = 15,257,
p < .001,
Cohen’s d = 0.912

IMessage M = 5.45
(SD = 2.38)

M = 4.65
(SD = 2.38)

t(2198) = 6,924,
p < .001,
Cohen’s d = 0.337

Telegram M = 5.38
(SD = 2.41)

M = 4.66
(SD = 2.38)

t(2198) = 6,304,
p < .001,
Cohen’s d = 0.301

WhatsApp M = 4.91
(SD = 2.38)

M = 3.11
(SD = 2.74)

t(66,969) = 5,242,
p < .001,
Cohen’s d = 0.754

Threema M = 4.56
(SD = 2.39)

M = 4.87
(SD = 2.41)

t(2198) = 1,318,
p = .188,
Cohen’s d = − 0.129

Signal M = 4.86
(SD = 2.48)

M = 4.85
(SD = 2.38)

t(2198) = 0.049,
p = .961,
Cohen’s d = 0.002

Snapchat M = 5.48
(SD = 2.10)

M = 4.41
(SD = 2.52)

t(2155,550) = 10,862,
p < .001,
Cohen’s d = 0.456

TikTok M = 5.66
(SD = 2.13)

M = 4.22
(SD = 2.43)

t(2170,555) = 14,831,
p < .001,
Cohen’s d = 0.627

Twitter M = 5.75
(SD = 2.25)

M = 4,60
(SD = 2,39)

t(811,910) = 9,750,
p < .001,
Cohen’s d = 0.485

Tumblr M = 5.78
(SD = 2.29)

M = 4,81
(SD = 2,40)

t(2198) = 4,124,
p < .001,
Cohen’s d = 0.405

Pinterest M = 5.43
(SD = 2.16)

M = 4.42
(SD = 2.49)

t(2166,500) = 10,168,
p < .001,
Cohen’s d = 0.429

Skype M = 5.30
(SD = 2.43)

M = 4,77
(SD = 2.40)

t(2198) = 3,818,
p < .001,
Cohen’s d = 0.221

Others M = 5.49
(SD = 2.25)

M = 4.42
(SD = 2.42)

t(2023,705) = 10,656,
p < .001,
Cohen’s d = 0.456
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along with higher SNUD tendencies [7], what we also 
observed in the present work. If readers are interested in 
further investigating age and gender variables in the con-
text of certain platform use, the data is available for fur-
ther analysis (OSF: https://osf.io/9j8g3/).

Limitations
The present study comes with several limitations. First, 
the present study is a self-report study and therefore can 
be biased by lack of introspection and answering in a 
socially desirable fashion. Second, the present study is of 
cross-sectional nature and consequently no causality can 
be derived. Third, the assessment of frequency of social 
media use should be more fine-granular in the future and 
should go beyond usage of once a month vs. more sel-
dom. Fourth, the present sample is a convenience sample, 
hence the generalization of results may be limited (might 
be also biased due to the recruiting strategy inviting par-
ticipants for a larger study on smoking and social media 
use). Finally, some of the investigated social media groups 
in this work are small and statistics might not be robust 
here (e.g. only 5% mentioned to use Tumblr and Threema 
at least occasionally).

Conclusion
In conclusion, the present work underlines the idea that 
not all social media platforms are the same in terms of 
their addictive potential and that distinct analysis of 
platforms are required. Beyond this, clearly more use of 
social media apps goes along with higher addictive ten-
dencies towards social media in general. Findings might 
be used for considering convenient assessment of simple 
markers to detect individuals at-risk for addictive use of 
social media. Frequency of use and the total number of 
social media apps used could serve as early signs in digi-
tal phenotyping or mobile sensing [37]. Moreover, they 
might be used in addition to or as a part of screening 
questionnaires. Early detection is a prerequisite for inter-
vention approaches in terms of indicative prevention as 
stand-alone measure or within a comprehensive stepped-
care approach [38].
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