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Introduction
The genus Bartonella is a group of Gram-negative, fas-
tidious, facultative intraerythrocytic bacteria in the fam-
ily Bartonellaceae [1]. Species of Bartonella are regarded 
as emerging zoonotic pathogens, transmitted from verte-
brate animal hosts to humans via arthropod vectors such 
as fleas, biting flies, and lice [1]. Twenty-five recognized 
species of Bartonella have been isolated from wild small 
mammal hosts such as rodents and shrews, highlight-
ing the involvement of these animals in sylvatic Barton-
ella cycles [1–3]. There is an incomplete understanding 
of Bartonella reservoir ecology, and novel Bartonella 
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Abstract
Objective  Bartonella are emerging bacterial zoonotic pathogens. Utilization of clotted blood samples for surveillance 
of these bacteria in wildlife has begun to supersede the use of tissues; however, the efficacy of these samples has not 
been fully investigated. Our objective was to compare the efficacy of spleen and blood samples for DNA extraction 
and direct detection of Bartonella spp. via qPCR. In addition, we present a protocol for improved DNA extraction from 
clotted, pelleted (i.e., centrifuged) blood samples obtained from wild small mammals.

Results  DNA concentrations from kit-extracted blood clot samples were low and A260/A280 absorbance ratios 
indicated high impurity. Kit-based DNA extraction of spleen samples was efficient and produced ample DNA 
concentrations of good quality. We developed an in-house extraction method for the blood clots which resulted 
in apposite DNA quality when compared to spleen samples extracted via MagMAX DNA Ultra 2.0 kit. We detected 
Bartonella in 9/30 (30.0%) kit-extracted spleen DNA samples and 11/30 (36.7%) in-house-extracted blood clot samples 
using PCR. Our results suggest that kit-based methods may be less suitable for DNA extraction from blood clots, and 
that blood clot samples may be superior to tissues for Bartonella detection.
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species continue to be detected in different wildlife hosts 
and new geographic areas, emphasizing the need for con-
tinued surveillance [1, 4].

Despite the abundance of molecular techniques (e.g., 
PCR) available for testing biological samples for presence 
of bacterial pathogens, the majority of Bartonella surveil-
lance research continues to employ methodologies which 
rely on successful culture and isolation [3]. This typically 
employs use of blood and – particularly in the case of 
small mammals – homogenized tissues to culture Bar-
tonella isolates on solid media [5, 6]. In many wildlife dis-
ease surveillance settings, sample sizes and resources are 
limited which can make laborious culture-based meth-
odologies challenging. Furthermore, appropriate tissue 
samples are not always available; spleen, for example, is 
collected post-mortem and cannot be collected in studies 
where only live animals are sampled. Blood samples how-
ever, can be obtained from live animals and can be used 
for multiple testing modalities – especially when centrif-
ugated and fractionated into their different components. 
Our objective was to compare the efficacy of spleen and 
blood samples for DNA extraction and direct detection 
of Bartonella spp. via qPCR. In addition, we present a 
protocol for improved DNA extraction from clotted, pel-
leted (i.e., centrifuged) blood samples obtained from wild 
small mammals.

Methods
Samples for this study were taken from animals previ-
ously collected for an ongoing surveillance project inves-
tigating zoonotic pathogen occurrence in urban small 
mammal wildlife in Toronto, Canada, in 2021 and 2022. 
Trapping and sampling procedures have been previ-
ously described [7]. Briefly, small mammal species were 
live-trapped using Sherman traps (H.B. Sherman Traps 
Inc., Tallahassee, FL, USA) baited with sunflower seeds 
and apple. Identification of animals was made on a mor-
phological basis by trained field personnel. Animals were 
humanely euthanized promptly using open-drop inhaled 
isoflurane in an enclosed chamber. Euthanasia was fol-
lowed by cardiac puncture to obtain 0.5 mL whole blood. 
Samples were kept on ice until processing later the same 
day. Whole blood samples were centrifuged at 3000 × g 
for 10  min followed by separation of sera from clotted 
blood. Tissue samples were obtained at necropsy on the 
same day. All samples were stored at -80 °C until further 
use.

For the purposes of this study, we tested thirty animals 
with both blood and spleen samples. This included 27 
white-footed mice (Peromyscus leucopus), two eastern 
meadow voles (Microtus pennsylvanicus), and one short-
tailed shrew (Blarina brevicauda).

For DNA extraction and PCR, samples were shipped 
on dry ice to the Department of Veterinary Microbiology, 

University of Saskatchewan (Saskatoon, Canada). The 
MagMAX DNA Ultra 2.0 kit (Thermo Fisher Scientific 
Inc., Canada) was used as a baseline extraction procedure 
to compare efficacy of a commercial kit method against 
the in-house protocol described herein; 60–120  mg of 
blood clot (BC) was extracted according to the manufac-
turer’s instructions. To compare the efficacy of BC DNA 
extraction to that of tissues, 60  mg of spleen samples 
from the same animals were extracted using the afore-
mentioned kit following the manufacturer’s instructions. 
The in-house procedure for DNA extraction from BC 
samples was a salting-out technique adapted from Mar-
tín-Platero et al. [8]. Briefly, 50–100 mg of BC was added 
to 500 µL of MagMAX Cell and Tissue DNA Extraction 
Buffer (Thermo Fisher Scientific Inc., Canada) in a 2 
mL Lysing Matrix E tube (MP Biomedicals LLC, USA). 
Samples were homogenized in a bead beater for 2  min 
at 30 beats/sec. Samples were then vortexed for 5  min. 
Next, 20 µL of MagMAX DNA Multi-Sample Ultra 2.0 
Enhancer Solution (Thermo Fisher Scientific Inc., Can-
ada) and 40 µL of MagMAX DNA Multi-Sample Ultra 2.0 
Proteinase K solution (100 mg/mL; Thermo Fisher Scien-
tific Inc., Canada) were added to the samples, followed by 
water bath incubation at 55 °C for 2 h with brief vortex-
ing every 30 min. Samples were then centrifuged at 3500 
× g for 1 min and supernatants were transferred to clean 
1.5 mL microcentrifuge tubes. Next, 200 µL of sodium 
acetate (3.0 M, pH 5.2) was added, followed by inverting 
to mix and incubation on ice for 15  min. Samples were 
then centrifuged at 16,200 × g for 10 min. Then, 400 µL 
of supernatant was added to 400 µL of 100% isopropa-
nol, followed by addition of 1 µL of UltraPure Glycogen 
(Thermo Fisher Scientific Inc., Canada). Samples were 
then mixed in a tube rotator for 5 min at room tempera-
ture, followed by centrifugation at 16,200 × g for 5 min. 
Supernatant was discarded and pellet was allowed to dry 
before adding 400 µL of fresh 70% ethanol and inverting 
to mix. Samples were centrifuged at 16,200 × g for 3 min. 
Supernatant was discarded and the pellet was allowed to 
dry for 5–10  min. DNA was eluted through addition of 
100 µL of 1× TE buffer (pH 8.0) and water bath incuba-
tion at 65 °C for 1 h. DNA extracts were stored at -20 °C 
until further analysis. All extraction procedures included 
controls with reagents only. All samples were diluted 
1:10 in molecular-grade water to dilute PCR inhibitors. 
Quantification of extracted DNA was completed using a 
NanoDrop ND2000 spectrophotometer (Thermo Fisher 
Scientific Inc., Canada).

To assess extract suitability for Bartonella spp. detec-
tion, a SYBR Green real-time PCR (qPCR) was per-
formed to amplify a fragment of the host cytochrome 
B gene (cytB). Primers and product sizes for host cytB 
qPCR are available in Supplementary Table 1. Each cytB 
qPCR reaction was 10 µL in total volume, consisting of: 
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5 µL of 2× SYBR Green mix (Bio-Rad Laboratories, Inc., 
USA), 0.5 µM of each primer, 2 µL of molecular-grade 
water, and 2 µL of template DNA. Extraction controls 
and no template controls (NTCs) were included in each 
qPCR batch. The cytB qPCR was performed on a Bio-
Rad CFX96 (Bio-Rad Laboratories, Inc., USA) with the 
following thermocycling conditions: 95 °C for 3 min fol-
lowed by 40 cycles of 95 °C for 10 s, 57 °C for 10 s, 72 °C 
for 30  s; a melt curve analysis was performed follow-
ing thermocycling. Samples positive for host cytB were 
selected to advance to Bartonella spp. qPCR; negative 
samples were further diluted to 1:100 in molecular-grade 
water and re-tested.

Testing for presence of Bartonella spp. was done with 
a SYBR Green qPCR targeting a ~ 380  bp fragment of 
the Bartonella citrate synthase gene (gltA) using prim-
ers BhCS.781p (5’- ​G​G​G​G​A​C​C​A​G​C​T​C​A​T​G​G​T​G​G − 3’) 
and BhCS.1137n (5’- ​A​A​T​G​C​A​A​A​A​A​G​A​A​C​A​G​T​A​A​A​C​
A − 3’) [9]. Each gltA qPCR reaction was 10 µL in total 
volume, with the same proportions of reagents as the 
cytB qPCR. The positive control, previously described in 
Himsworth et al. (2020), was a PCR product of Barton-
ella vinsonii gltA prepared at a concentration of 1.03 × 106 
copies/µL [10]. Extraction controls and NTCs were 
included in each qPCR batch. All samples and controls 
were run in duplicate. The gltA qPCR was performed on 
a Bio-Rad CFX96 (Bio-Rad Laboratories, Inc., USA) with 
the same thermocycling conditions as the cytB qPCR; a 
melt curve analysis was performed following thermocy-
cling. Samples with a Ct value < 40 and melt peak at 80.0° 
C to 81.0° C were considered positive for Bartonella spp. 
A subset of positive samples from both BCs and spleen 
samples were sent for Sanger sequencing to confirm 
amplification of Bartonella gltA.

Results
Overall, BCs extracted via the in-house method were 
comparable in quality to those obtained from spleen 
samples extracted via kit method (Table  1). DNA con-
centrations of spleen sample kit extracts (median 444.1 
ng/µL, mean 458.1 ng/µL) were substantially higher 
than that of BC in-house extracts (median 33.2 ng/µL, 
mean 49.3 ng/µL), likely due to the high cellular content 
of tissue samples. Notably, BC samples extracted via kit 
were determined to be unsuitable for further analysis; 
DNA concentrations were mostly low or unmeasur-
able (median 3.1 ng/µL, mean 11.7 ng/µL) and A260/
A280 measurements suggested presence of impurities 
(Table 1).

All thirty animals were positive for PCR targeting host 
cytB and were therefore suitable for use in Bartonella 
detection. For gltA qPCR, nine out of thirty (9/30, 30.0%) 
spleen samples were positive with Ct values ranging 
from 24.91 to 35.26 (median 32.47, mean 31.85; Table 2). 

Eleven out of thirty (11/30, 36.7%) BC samples from in-
house extractions were positive on gltA qPCR, with Ct 
values ranging from 21.58 to 35.24 (median 27.86, mean 
28.52; Table  2). All nine animals that were positive on 
spleen testing were also positive on BC testing; two other 
animals were positive on BC only. Note that three blood 
samples had not been centrifuged due to low sample vol-
ume (Table 2). Four randomly selected gltA qPCR + sam-
ples sent for Sanger sequencing confirmed the amplified 
products to be Bartonella gltA.

Discussion
Sampling of wild small mammals for Bartonella surveil-
lance purposes and disease ecology research has typically 
relied on collection of whole blood and blood-rich tissues 
such as spleen and heart [3]. We were able to directly 
detect Bartonella via qPCR from both clotted blood and 
spleen samples; however, we detected two additional 
positive animals from the BC samples. Our work builds 
on previous findings from Schulte Fischedick et al. [11] 
which compared PCR of tissues with culture of BCs and 
detected more positives with the latter. We found that 
direct PCR detection of Bartonella from BCs could rep-
resent a more accessible and sensitive detection method 
compared to use of tissues, circumventing the need for 
culture. BCs may be a better sample type for Bartonella 
detection due to lower concentration of PCR inhibitors 
in blood samples versus tissues, as well as possible con-
centration of Bartonella in BCs via centrifugation.

Culture of Bartonella is laborious, time-consuming and 
has low sensitivity; similar colony morphologies, min-
ute differences in temperature requirements, and overall 
differences in cultivability make detecting the presence 
of co-infection with multiple Bartonella spp. via culture 
difficult [3, 5, 12, 13]. These limitations are important to 
consider when investigating the ecology of different Bar-
tonella spp. in wildlife reservoirs. Few wildlife studies 
have attempted direct detection via molecular techniques 
in clotted blood, all of which have utilized kit-based DNA 
extraction [11, 14–18]. None of the abovementioned 
studies have reported measurements of DNA extraction 
quality, and differences in PCR protocols make compari-
son of PCR results inappropriate. Based on our results, 
some kit-based DNA extraction methods may be unsuit-
able for BCs, perhaps due to lack of mechanical disrup-
tion of the fibrin mesh [19]. While some kits designed 
for tissue samples include mechanical disruption steps 
such as bead tube vortexing, kit-based methods are nev-
ertheless expensive with costs of >$5 USD per sample 
[19]. Additionally, using tissue samples such as spleen 
for Bartonella spp. investigation requires lethal sampling 
and although the small mammals used in our study were 
euthanized for other purposes, methods exist to col-
lect non-lethal blood samples in volumes usable for the 
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described in-house methodology. The use of non-lethal 
blood samples for Bartonella spp. as a viable alternative 
to tissues reduces invasiveness of sampling and allows for 
longitudinal studies.

We have demonstrated the successful use of clotted, 
pelleted blood as a viable sample type for efficient DNA 
extraction using an in-house protocol, and direct detec-
tion of Bartonella spp. via real-time PCR. After centrif-
ugation of whole blood and serum separation, pelleted 
blood cells and clots are typically regarded as a waste 
product and discarded. We propose that this byprod-
uct of centrifugation may be suitable for hemoparasite 
molecular testing, particularly hemoparasites of intracel-
lular natures. Therefore, collection of serum from whole 
blood samples is still possible for use in other testing 
methodologies, allowing studies to conduct both molecu-
lar and serological testing from non-lethal blood samples 
alone. This is particularly relevant for small mammals like 
mice, voles, and shrews where blood sample volumes are 

limited by body mass. Overall, resources and time can 
be saved through bypassing culture methods and instead 
conducting DNA extraction and PCR on BCs directly. 
This practice bears relevance for future Bartonella or 
other hemoparasite disease ecology and surveillance 
studies, especially those investigating wild small mammal 
populations.

Limitations
The sample size used for this study was limited and 
insufficient to conduct meaningful statistical analy-
sis for comparison of Bartonella qPCR performance in 
BCs versus spleen samples. Additionally, our extractions 
included only a single kit-based methodology which 
may not be representative of the capabilities of all com-
mercially available DNA extraction kits. Lastly, our Bar-
tonella qPCR reaction only targeted gltA; therefore, we 
cannot guarantee that the described in-house BC DNA 

Table 1  Concentrations and purities of DNA extractions from spleen and blood clot samples
MagMAX™ DNA Ultra 2.0 kit In-house method

Sample ID Spleen Blood clot Blood clot

[DNA] (ng/µL) 260/280 [DNA] (ng/µL) 260/280 [DNA] (ng/µL) 260/280
21-SM-02 1114.2 1.86 -2.9 3.5 N/A a N/A
21-SM-03 440.2 1.87 -2.8 3.29 N/A N/A
21-SM-04 -3.7 2.47 -2.8 2.91 N/A N/A
21-SM-05 245.7 1.84 -2.7 3.94 N/A N/A
21-SM-06 717.8 1.84 -3.1 2.35 N/A N/A
21-SM-07 776.4 1.85 -2.2 3.15 N/A N/A
21-SM-10 388.7 1.9 2.6 1.78 N/A N/A
21-SM-11 655.3 1.85 8.7 1.96 N/A N/A
21-SM-12 800.5 1.87 -2.9 2.16 11 2.11
21-SM-13 561.2 1.87 0.9 0.77 11.6 1.82
21-SM-14 9.5 1.74 9.2 1.96 22.1 1.88
21-SM-15 237.4 1.88 25.9 1.82 39.9 1.85
21-SM-16 210.5 1.86 7 1.71 14.8 1.88
21-SM-17 286.5 1.87 2.2 2.13 60.1 1.99
21-SM-18 155.8 1.87 170.3 2.03 4.2 1.83
21-SM-19 465.7 1.87 -1.4 4.32 104.2 2.01
21-SM-20 761.4 1.86 64.6 1.99 45.5 0.68
22-SM-21 350.9 1.86 7.5 1.82 46.5 0.68
22-SM-22 464.5 1.87 1.3 0.94 21.3 0.59
22-SM-24 203.6 1.85 4.6 1.59 19.8 1.88
22-SM-27 38.9 1.82 0.3 0.31 9 1.68
22-SM-29 1005.9 1.85 3.6 1.98 26.5 1.87
22-SM-30 671.1 1.83 25.3 1.95 96.9 1.97
22-SM-33 631.3 1.8 -0.4 1.18 213.7 2.01
22-SM-34 602.5 1.84 1.2 1.05 62.8 1.91
22-SM-35 247.3 1.87 6.7 1.45 21.1 1.9
22-SM-36 428.8 1.87 5.4 1.8 45.5 1.94
22-SM-37 448 1.86 6.1 1.6 79.5 1.95
22-SM-39 622.3 1.86 5.6 1.76 26.1 1.85
22-SM-40 205.6 1.88 12.9 1.84 103 1.87
a NanoDrop measurements were not performed on the first eight blood clot extractions with the in-house method
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extraction protocol would give similar qPCR results with 
different Bartonella gene targets.

Abbreviations
A260/A280	� 260 nm/280 nm absorbance ratio for DNA purity assessment
Ct	� cycle threshold value; the number of PCR cycles required for 

the fluorescence threshold to be met during qPCR
DNA	� deoxyribonucleic acid
PCR	� polymerase chain reaction
qPCR	� real-time (‘quantitative’) polymerase chain reaction
USD	� United States dollar
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