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Abstract
Objective Livestock droppings cause some environmental problems, but they have the potential to be used 
as effective biomass resources. The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is suitable for 
efficiently processing such resources. By using BSF larvae for the disposal of livestock droppings, we can obtain two 
valuable products: protein resources and organic fertilizer. However, there is insufficient research on the digestive 
enzymes suitable for processing this waste. Here, we aimed to construct an efficient BSF processing system using 
livestock droppings, and we explored the digestive enzymes involved in this process.

Results First, we investigated the characteristics of transcripts expressed in the midgut of BSF larvae and found 
that immune response-related genes were expressed in the midgut. Then, we investigated digestive enzymes and 
identified a novel serine protease, HiBrachyurin, whose mRNA was highly expressed in the posterior midgut when 
BSF larvae fed on horse droppings. Despite the low protein content of horse droppings, larvae that fed on horse 
droppings accumulated more protein than those in the other groups. Therefore, HiBrachyurin may contribute to 
digestibility in the early stage of protein degradation in BSF larvae fed on horse droppings.
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Introduction
Increasing livestock production in response to the constant 
growth in human population will lead to problems with the 
disposal of animal waste. Livestock droppings cause some 
environmental problems, such as bad smells, soil eutrophi-
cation and water pollution [1, 2], but they have the potential 
to be used as effective biomass resources.

The black soldier fly (BSF), Hermetia illucens (Diptera: 
Stratiomyidae), is well suited for efficient utilization of 
livestock droppings. The larvae of H. illucens can feed on 
a wide range of organic waste, including livestock drop-
pings, and decaying foods [3, 4]. BSF has more types and 
numbers of digestive enzymes than the house fly, Musca 
domestica, which means that the digestive power of BSF 
may be greater than that of the house fly. [5].

Rehman et al. [6] reported that when 1 kg of dairy drop-
pings was fed to 1000 six-day-old BSF larvae, the reduction 
rate was 63.2% in wet weight. BSF larvae can accumulate 
fat and protein in their bodies [7]. The protein derived from 
larvae can likely be used as a substitute for soybean meal 
or fish meal or in animal feed [3]. Even when fed livestock 
droppings, BSF larvae are not only rich in proteins but 
also have a well-balanced amino acid profile [4, 8]. Kawa-
saki et al. (2019) conducted an experiment in which lay-
ing hens were fed an experimental diet, the ingredients of 
which were partially replaced by BSF larvae [4]. They found 
no adverse effects on hen weight, feed intake, or egg lay-
ing rate, while laying hens fed a diet containing BSF larvae 
laid eggs that were heavier and had thicker shells than those 
laid by control hens [4]. The fats derived from BSF larvae 
have been considered for use as biodiesel [9]. The proper-
ties of biodiesel derived from BSF larvae fed on food waste 
or livestock droppings were shown to be consistent with the 
European biodiesel standard EN14214 [9, 10].

Furthermore, BSF larvae convert biowaste into biomass, 
and the residue remaining after treatment shows compost-
like properties [11]. This composting process does not emit 
large amounts of greenhouse gases such as methane or N₂O 
[12].

This BSF processing system contributes to reducing food 
shortage and improving the environmental health cycle. 
The development of the most efficient BSF rearing sys-
tem requires an understanding of the associated digestive 
mechanism. However, the digestive mechanism of BSF has 
not been well elucidated. Only two types of serine proteases 
(HiTrypsin, HQ424575; HiChymotrypsin, HQ424574) were 
found and characterized in the BSF larvae [5, 13]. Given 
BSF’s wide range of digestive capabilities, further research 
into other digestive enzymes is essential. In this study, we 
aimed to construct an efficient BSF processing system using 
livestock droppings and explored the digestive enzymes 
involved in this process.

Main text
Methods
Insects
H. illucens female adults were obtained from the Fuchu 
campus at the Tokyo University of Agriculture and Tech-
nology, and their oviposited eggs were collected. The 
hatched larvae were maintained using horse, dairy cow, 
and laying hen droppings (Supplementary information) 
or an artificial diet [14] at 27 °C with a 16-h light/8-h dark 
cycle.

Feeding tests
Newly hatched larvae were fed an artificial diet for sixteen 
days. Then, 20 sixteen-day-old larvae were transferred to 
a new plastic cup. Ten grams of each livestock dropping 
was added to a plastic cup every three days until the larvae 
reached the prepupal stage. We recorded the body weight 
of the BSF larvae and the food intake until the end of the 
experiment. The feed conversion ratio (FCR) was calculated 
as follows:

 

FCR =
feedweight − lef toversweight

final body weight of larvae − initial body weight of larvae

The feeding tests were carried out in triplicate as biologi-
cal replicates.

Component analysis
We examined the water, crude protein and fat contents. 
Briefly, each sample was placed on a glass Petri dish and 
freeze-dried with a lyophilizer (VD-250  F, TAITECH Co., 
Ltd., Saitama, Japan) for 24 h. Each sample was pulverized 
and weighed using a Mettler balance. These dried samples 
were then used for analyses. The Kjeldahl method was used 
for crude protein analysis [15]. The Folch method was used 
for crude fat analysis [16].

RNA-seq analysis and trypsin analysis
Total RNA from the midgut and fat body samples of BSF 
larvae was purified with TRIzol™ reagent (Thermo Fisher 
Scientific Inc., Waltham, Massachusetts, USA). Then, we 
used a TapeStation 2200 (Agilent Technologies, Inc., Santa 
Clara, CA, USA) to assess RNA quality. cDNA library con-
struction from total RNA (100 ng) was carried out using 
the TruSeq® Stranded mRNA Library Preparation Kit (Illu-
mina, Inc., San Diego, CA) or a NovaSeq® 6000 SP Reagent 
Kit (Illumina, Inc., San Diego, CA, USA). These libraries 
(100  bp, paired-end) were sequenced using the Illumina 
NovaSeq 6000 or HiSeq2500 sequencer (Illumina Inc., San 
Diego, USA) platform.

Then, FASTQ files were assessed with the Trim Galore 
(v0.6.7) trimming tool (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/). Trinity software 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


Page 3 of 6Wakuda et al. BMC Research Notes          (2024) 17:182 

(v2.5.1) was used to construct de novo transcriptomes 
[17]. Transcript abundance was estimated using kal-
listo, and DNA sequences were translated to amino acid 
sequences with a transdecoder.

Gene enrichment analyses were performed using 
Metascape gene annotation and analysis resource 39 
(https://metascape.org/). A gene list for Metascape anal-
ysis was generated from the output. The gene IDs were 
converted from the H. illucens RNA-seq data to D. mela-
nogaster NCBI ID numbers with an e-value (1E-10) using 
the tblastx program in NCBI BLAST to construct an 
assignment table.

The sequences with the trypsin motif (PF00089, 
https://www.ebi.ac.uk/interpro/entry/pfam/PF00089/) 
were searched against these amino acid sequences with 
HMMER. Then, we annotated such sequences with 
BLAST KOALA (https://www.kegg.jp/blastkoala) and 
the tblastx program (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) [18, 19]. Therefore, we constructed a pipeline for 
choosing trypsin for H. illucens larvae (Fig. S1).

cDNA cloning
The PCR-amplified cDNA products amplified with the 
specific primers (Table S1) were cloned with a pIEx-1 vec-
tor (Merck, Darmstadt, Germany) and used to transform 
ECOS™ competent E. coli XL-1 blue cells (NIPPON GENE 
Co. Ltd., Tokyo, Japan) for subcloning. Then, nucleotide 
sequences were determined using a DNA analyser (3730xl, 
Thermo Fisher Scientific).

RT‒qPCR
The midgut was divided into three parts, the anterior 
midgut (AMG), middle midgut (MMG), and posterior 
midgut (PMG), according to the methods of Bonelli, M. 
et al. [20] (Fig. S2). Total RNA was then extracted from 
each part as described above.

One microgram of total RNA was treated with DNase I 
(Invitrogen, Van Allen Way, Carlsbad, CA, USA), and then 
500 ng of DNase-treated total RNA was used as a template 
for cDNA synthesis using a PrimeScript™ 1st strand cDNA 
Synthesis Kit (Takara Co., Ltd., Tokyo, Japan) in accordance 
with the manufacturer’s instructions. Real-time quantita-
tive PCR (RT‒qPCR) was performed in 20 µL reactions with 
0.5 µL of cDNA template and the specific primers (Table 
S2) along with a KAPA SYBR Fast qRT‒PCR Kit (Nippon 
Genetics Co., Ltd., Tokyo, Japan) in accordance with the 
manufacturer’s instructions.

Statistical analysis
The Tukey HSD method was used for determining statis-
tical significance. Differences were considered significant 
at a p value < 0.05.

Results and discussion
Gene enrichment analysis revealed that genes related 
to the Gene Ontology (GO) terms defence response to 
other organism (GO:0098542), neutrophil degranulation 
(R-DME-6,798,695), and regulation of biosynthetic process 
of antibacterial peptides active against gram-negative bacte-
ria (GO:0002813) were more enriched in the midgut tran-
scripts than in the fat body transcripts (Fig. 1-a). The GO 
terms in the midgut were related to immune responses to 
invasion by another organism, such as antimicrobial peptide 
production, unlike those in the fat body (Fig. 1-b). Livestock 
droppings also contain various types of bacteria. We spec-
ulated that BSF larvae are suitable for processing livestock 
droppings based on their molecular expression characteris-
tics in the midgut.

Trypsin-like enzymes (EC3.4.21.4) play an important role 
in protein degradation in BSF larvae [5]. Trypsin is a type of 
serine protease that functions at alkaline pH and preferen-
tially cleaves peptide bonds on the carboxyl side of arginine 
and lysine [21]. Trypsin activity is greater than amylase or 
lipase activity in the midgut of BSF larvae [13].

Insects have common digestive enzymes, and they can 
produce specific enzymes depending on their food [21]. 
Thus, we comprehensively explored digestive enzymes (Fig. 
S1), and we classified these transcripts into three types of 
proteases, namely, trypsin, cysteine protease, and aspartic 
acid protease, with transcripts per million (TPM) values 
greater than 150 (Fig. S1, Table S3). Among the three prote-
ases, trypsin was the most abundant (Fig. S3). We extracted 
the trypsin transcript annotated as new brachyurin-like 
(TRINITY_DN59_c0_g1_i5) and determined its nucleotide 
sequence by cDNA cloning. The full length was 1072 bp, of 
which 867 bp was an open reading frame, and it was pre-
dicted to encode a polypeptide consisting of 288 amino acid 
residues. We named this transcript H. illucens Brachyurin 
(HiBrachyurin, the accession ID: LC780168).

Brachyurin is found in Uca pugilator and has been iso-
lated mainly from marine invertebrates [22]. Brachyurin 
cleaves peptide bonds approximately 3/4 of the way from 
the amino terminus of collagen chains [23]. It also has 
broader substrate specificity than trypsin and chymotryp-
sin, although its cleavage efficiency against these substrates 
is lower [23–25].

Next, we conducted a feeding test using livestock drop-
pings to examine the efficiency of processing by BSF lar-
vae. The larvae fed on horse droppings had the lowest feed 
conversion ratio (FCR) and pupated the earliest (Table  1). 
The survival rate was greater in the horse and cow drop-
ping group than in the other groups (Table 1). The protein 
content was greater in the hen droppings than in the horse 
and cow droppings (Fig.  2-a); however, the protein con-
tent increased 7-fold for the larvae fed on the horse drop-
pings, 5-fold for the larvae fed on the cow droppings, and 
1.2-fold for the larvae fed on the hen droppings (Fig.  2-b, 

https://metascape.org/
https://www.ebi.ac.uk/interpro/entry/pfam/PF00089/
https://www.kegg.jp/blastkoala
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1). The percentage of fat increased 4-fold for the lar-
vae fed on the horse droppings, 7-fold for the larvae fed on 
the cow droppings, and 4-fold for the larvae fed on the hen 
droppings (Fig. 2-b, Table 1). Therefore, the most efficient 
method for larvae to accumulate protein and lipids in their 
bodies was to feed on horse droppings.

Moreover, none of the zero- or ten-day-old larvae that fed 
on hen droppings lived for fifteen days (n = 100, respectively) 
(Table S4&5). The larvae that fed on hen droppings showed 
high mortality, possibly due to excess protein contained in 
the hen droppings being converted to ammonia [26, 27]. 
The survival rate of BSF larvae fed only fish or meat was 
significantly lower than that of larvae fed only vegetables or 
carbohydrates [28]. Additionally, all larvae died within 10 
days when BSF larvae were fed on only fish [29]. Therefore, 
our results indicate the need to consider the protein content 
in livestock droppings to reduce BSF larval mortality.

Finally, we examined the relationships between processing 
livestock droppings and HiBrachyurin. The mRNA expres-
sion level of HiBrachyurin was significantly greater in the 
PMG than in the MMG or AMG (Fig. 2-c and S2). We also 
examined the mRNA expression of HiBrachyurin in the lar-
val PMG fed on each livestock by RT‒qPCR and found that 
HiBrachyurin mRNA expression was greater in the larvae 
fed on horse droppings than in those fed on other droppings 
(Fig.  2-d). HiBrachyurin mRNA expression was consistent 
with the expression of proteolytic enzymes in the midgut 
[20]. Also, we checked whether the Brachyurin transcript 
in other insects that fed on animal droppings is expressed 
in the midgut. The dung beetle, Phelotrupes auratus, had a 
relatively high Brachyurin transcript expression in the mid-
gut that fed on horse droppings compared to deer drop-
pings (Figure S4). Therefore, Brachyurin might play a role 
at an early stage of protein degradation in the midgut when 
insects have fed on animal droppings.

Table 1 The efficiency of processing livestock droppings using 16-day-old larvae
Food Body weight (g) Feed conversion ratio (%) Growing period (day) Survival rate (%)
Horse 0.074 ± 0.012a 8.97 ± 2.56 33 ± 6.24a 100 ± 0.00
Cow 0.098 ± 0.005ab 9.25 ± 1.90 39 ± 6.24a 100 ± 0.000
Hen 0.088 ± 0.004 ab 16.32 ± 6.49 40 ± 9.00a 86.7 ± 15.28
artificial diet 0.109 ± 0.016b 19.43 ± 6.70 60 ± 6.24b 93.3 ± 2.89
All data are shown as the mean ± standard deviation (SD). The Tukey HSD method was used for determining statistical significance

Fig. 1 Gene enrichment analysis of the midgut and fat body. The upregulated transcripts were extracted, and gene enrichment analysis was performed. 
Gene enrichment analysis of fluctuating transcripts in the midgut (a) and fat body (b) using Metascape. A heatmap of enriched terms across the input 
transcript lists; different coloured bars indicate p values. The closer to dark red the colour is, the lower the p value
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Conclusion
In summary, we identified a new type of serin protease, 
HiBrachyurin, which plays a role in larvae fed on horse 
droppings. BSF larvae fed on horse droppings efficiently 
accumulated protein and lipids in their bodies. Compat-
ibility with the digestive enzymes of BSF larvae in the 
treatment of livestock droppings could be achieved to 
increase the efficiency of the process.

Limitations
Our pipeline for detecting digestive enzymes makes 
searching for new digestive enzymes difficult without 
characteristic motifs.
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The online version contains supplementary material available at https://doi.
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