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Abstract 

Objectives Much has been written about the utility of genomic databases to public health. Within food safety these 
databases contain data from two types of isolates—those from patients (i.e., clinical) and those from non-clinical 
sources (e.g., a food manufacturing environment). A genetic match between isolates from these sources represents 
a signal of interest. We investigate the match rate within three large genomic databases (Listeria monocytogenes, 
Escherichia coli, and Salmonella) and the smaller Cronobacter database; the databases are part of the Pathogen Detec-
tion project at NCBI (National Center for Biotechnology Information).

Results Currently, the match rate of clinical isolates to non-clinical isolates is 33% for L. monocytogenes, 46% for Sal-
monella, and 7% for E. coli. These match rates are associated with several database features including the diversity 
of the organism, the database size, and the proportion of non-clinical BioSamples. Modeling match rate via logistic 
regression showed relatively good performance. Our prediction model illustrates the importance of populating 
databases with non-clinical isolates to better identify a match for clinical samples. Such information should help 
public health officials prioritize surveillance strategies and show the critical need to populate fledgling databases (e.g., 
Cronobacter sakazakii).
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Objectives
With the advent of genomics and the increasing acces-
sibility to the technology associated with it (e.g., sec-
ond- and third-generation DNA sequencers), large ‘big 
data’ genomic databases now exist for many pathogens. 
These databases are ever growing because of surveil-
lance efforts. The necessity and utility of such databases 

continue to be trumpeted [1]. The discussion is often 
focused on how to increase the size of the database via 
facilitating access to the technology, promoting open 
sharing of the data, and that equitable data use and 
acknowledgement practices are followed [2–4]. Often 
lacking from the discussion are measures of the informa-
tion content of such databases and how likely they are to 
return actionable information regarding new samples. 
Some understanding of this is crucial to setting expecta-
tions and identifying gaps for improvement.

Within food safety, the NCBI Pathogen Detection 
Project; [5] includes large heterogenous databases for a 
number of pathogens such as Salmonella enterica spp. 
enterica, Listeria monocytogenes, and Escherichia coli to 
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which whole-genome sequence (WGS) data is submitted, 
curated to ensure quality, and clustered. These databases 
are populated daily with new isolates from numerous 
public health agencies, academic institutions, and oth-
ers throughout the world (e.g., [6]). For public health, 
these databases are routinely surveilled to detect signals 
of interest such as recent clinical isolates matching food 
or environmental isolates; this match between WGS data 
from different isolates generates the hypothesis that the 
source of the food or environmental isolates is the source 
of human illness. Such a hypothesis may then be con-
firmed via additional data sources and follow-up includ-
ing epidemiological and traceback [7].

Here, we investigated the characteristics of large 
genomic databases of E. coli, Salmonella, and L. monocy-
togenes and the relatively small Cronobacter spp. database 
that support food safety and public health. Our primary 
objective is to explore the behavior of match rate over 
time and determine whether we can forecast and predict 
the match rate under certain circumstances. In doing so, 
we investigated the characteristics of the database, such 
as database size, the proportion represented by non-
clinical isolates and the inherent genetic diversity of the 
pathogen. We also evaluated a logistic regression model 
to predict future database behavior.

Data description
Data collection and calculation of match rate
We investigated four genomic databases (L. monocy-
togenes, Escherichia coli, Salmonella, and Cronobacter 
spp.) that are part of NCBI’s Pathogen Detection pro-
ject; the data analyzed here were downloaded on Feb 28, 
2023 (Table 1). Based on the epi_type metadata attribute, 
BioSamples were assigned as either “clinical” or “envi-
ronmental” (“environmental” also includes isolates from 
products and other non-clinical sources). Data with epi_
type NULL were excluded from the analyses. For each of 
the taxonomic groups, historical datasets were created 
for each quarter by including all clinical BioSamples with 
target_creation_date in that period and all environmen-
tal BioSamples with target_creation_date within and 

before that period; target_creation_date is a metadata 
attribute that represents the date that an isolate’s WGS 
data showed up in the Pathogen Detection database. It 
is important to note that the genomic data in the data-
base are from numerous global public health agencies, 
academic institutions, and other groups throughout the 
world. They are not a random sample of the pathogens 
present in the built and natural environment or found 
within the food products; the clinical data are predomi-
nantly from patients who visited a clinic as a result of 
being infected with a foodborne pathogen.

For estimates of the pairwise SNP distance among iso-
lates to determine whether two isolates match or not, 
we used the delta_positions_unambiguous, the num-
ber of positions where two isolates have different states 
and those states are unambiguous, within the SNP_dis-
tance.tsv for each pathogen provided by the Pathogen 
Detection Project (see https:// ftp. ncbi. nlm. nih. gov/ 
patho gen/ ReadMe. txt for more information). We used 
a SNP distance threshold of 20 to determine whether 
any clinical  BioSamples were a match to environmental 
biosamples; 20 is a general SNP distance threshold used 
in the interpretation of WGS from foodborne pathogens 
[7]. We note that in practice a single threshold may not be 
appropriate where because of taxon specific differences 
in genetic diversity and evolutionary dynamics (e.g., [8]) 
a more customized threshold could be used. The match 
rate of clinical samples to environmental samples in each 
quarter period was computed as the ratio of the number 
of matches to the total number of clinical BioSamples.

Match rate variability
In the past decade, the numbers of BioSamples in the 
NCBI Pathogen Detection database has grown rapidly 
for Salmonella, E. coli, and L. monocytogenes (Fig.  1a). 
At the end of 2022 (data before then constitutes what 
was analyzed here), Salmonella was the largest database 
(N = 506,936) followed by E. coli (N = 285,547) and L. 
monocytogenes (N = 54,555) (Table  1). Noticeably, there 
are only 1,140 Cronobacter spp. BioSamples in the data-
base with more than half of the records created after 

Table 1 Number of BioSamples per taxon, source (clinical or env.) and the match rate in the database at the end of year 2022

a Numbers in parentheses denote percentage of all BioSamples for the specified taxon
b Numbers in parentheses denote the percentage of clinical BioSamples that find matched non-clinical BioSamples in the database

Species NCBI’s PDG# Total number of 
Biosamples

Clinical  Biosamplesa Env.  Biosamplesa Clinical  Matchesb

Cronobacter PDG000000043.171 1140 221 (19%) 825 (72%) 31 (14%)

E. coli PDG000000004.3646 285,547 158,717 (56%) 44,714 (16%) 11,243 (7%)

Listeria PDG000000001.3127 54,555 17,640 (32%) 30,803 (56%) 5812 (33%)

Salmonella PDG000000002.2581 506,936 351,287 (69%) 119,791 (24%) 161,729 (46%)

https://ftp.ncbi.nlm.nih.gov/pathogen/ReadMe.txt
https://ftp.ncbi.nlm.nih.gov/pathogen/ReadMe.txt
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2018. As the database size growth rate increased rap-
idly from year 2014 to 2018 there was a corresponding 
increase in the match rate of each species (Fig.  2). This 
may be an artifact of how various public health agencies 
populated the database where, perhaps, a large collec-
tion of clinical isolates was deposited, and non-clinical 
isolates followed and gained pace of submission. Taking 
all BioSamples deposited in the database before Dec 31, 
2022 into account, 46% Salmonella clinical BioSamples 

and 33% L. monocytogenes BioSamples  matched non-
clinical BioSamples, and surprisingly E. coli, with the sec-
ond largest database size, only has a match rate of 7%. 

We found that there were drastic fluctuations in match 
rates, except for Cronobacter spp., during the primary 
stage when the databases were small (Fig. 2; see Supple-
mental Table  S1 for more information). This was espe-
cially pronounced when the database size was less than 
1000 samples. With still only 1140 Cronobacter spp. 
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Fig. 1 a The growth of sequence data for four foodborne pathogens within NCBI’s pathogen detection database. b Fraction of the total number 
of clusters that are “common” clusters (i.e., those containing both clinical and environmental BioSamples)
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Fig. 2 Fluctuations in match over time for four species. A simple moving average (taking average of previous 2 data points, current data point, 
and next 2 data points) curve in orange was added for Salmonella, E. coli, and Listeria to accentuate the variation of match rate over the years. Note 
differences in the scale of the y-axis
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BioSamples in the database, it is not surprising that the 
match rate has varied greatly since it was created over 10 
years ago.

Genetic diversity
To help explain why there are differences in the match 
rate among the taxa, we explored the number of total 
clusters in each database and the number of clusters that 
contain both environmental and clinical isolates (i.e., 
heterogenous sources) (Fig.  1b). The percent of clusters 
with isolates from heterogenous sources for Salmonella 
(19%) and L. monocytogenes (21%) look to still be increas-
ing (Fig.  1b). In contrast, only about 5% of E. coli clus-
ters contain both clinical and environmental isolates 
despite it having about three times as many clinical to 
non-clinical samples in the database that is similar to Sal-
monella (L. monocytogenes is the opposite and has 1.6 as 
many non-clinical samples to clinical samples). This sug-
gests that for E. coli either the putative source of clinical 
samples has not been sampled or the non-clinical iso-
lates have not contributed to illness. Another potential 
contributing factor to the low match rate for E. coli is 
that there are clinical isolates with an isolation source of 
“urine” or similar suggesting that they are not the result 
of foodborne pathogens but rather urinary tract infec-
tions. However, those isolates are only 6.7% of the clini-
cal isolates. Also of note with respect to E. coli is that we 
did not consider pathogenicity differences among E. coli 
in analyzing the data, which is complex but incorporating 
such information (i.e., virulence) in future work may also 
explain in part the low match rate. Additionally, E. coli 
does seem to have a higher genetic diversity and more 
genetic substructure than the other taxa investigated 
making matches less likely.

Modeling and prediction of match rate
First, simple logistic regressions were applied to explore 
relationship between quarterly match rate and seven data-
base feature variables respectively in the following form:

where p is the probability of clinical match, x1 is a pre-
dictor variable (one of the database features), β0 and β1 
are the regression coefficients. A positive β1 implies 
that increasing x1 is associated with higher p . The fitted 
models were evaluated by the Akaike information crite-
rion (AIC). Lower AIC and RSE suggest better fitting. In 
addition, pseudo-R square by McFadden was calculated 
as an indicative of improvement from the null model to 
the current model.

Seven database features we studied are: database size 
(number of total BioSamples in database), number of envi-
ronmental biosamples, number of clinical biosamples, 
number of heterogenous clusters (those that contain both 
environmental and clinical BioSamples), percentage of 
environmental biosamples, percentage of clinical biosam-
ples, and cluster ratio(heterogenous clusters/total). Quar-
terly match rates were calculated for observations ending 
on December 31, 2021, and data with database size less 
than 1000 were excluded from model fitting due to insta-
bility. All variables were significantly related to match rate 
(p < 0.001). Cluster ratio ranks highest with the lowest 
AIC values and highest McFadden’s R squared (Table  2). 
An increase of 0.5% in heterogeneity is associated with 
an increase of 10% in the odds of getting matched clinical 
BioSamples.

After identifying match rate related variables through 
logistic regression, we built multiple logistic regression 
models with all pairwise possible combinations of variables 
in the following form:

where p , β0 , β1 , and x1 have the similar meaning in simple 
logistic regression, x2 is the second predictor variable, β2 
and β3 are other two regression coefficients. If coefficient 

log

(

p

1− p

)

= β0 + β1x1

log

(

p

1− p

)

= β0 + β1x1 + β2x2 + β3x1x2

Table 2 Logistic regression and the variables related to match rate

The numbers in parentheses show the change in the predictor variable that is required to increase odds of getting matches by 10%

In the case of a negative coefficient, it is the reduction needed in the predictor variable to increase odds of getting matches by 10%

Variable AIC Coefficient* Std. Error P val McFadden’s  R2

Cluster ratio(heterogeneous/total) 12,354 1.89E + 01 (0.5%) 9.67E−02  < 0.001 0.820

Number of total environmental BioSamples 32,499 2.18E−05 (4377) 1.20E−07  < 0.001 0.527

Number of heterogeneous clusters 33,399 5.54E−04 (172) 3.07E−06  < 0.001 0.514

Number of total BioSamples 48,450 4.01E−06 (23,748) 2.87E−08  < 0.001 0.295

Number of total clinical samples 49,417 5.53E−06 (17,219) 4.03E−08  < 0.001 0.281

Percentage of environmental BioSamples 58,218 2.95E + 00 (3%) 2.87E−02  < 0.001 0.153

Percentage of clinical BioSamples 68,634 − 3.88E−01 (25%) 3.57E−02  < 0.001 0.002
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( β3) of an interaction term x1x2 is significant, it indicates 
that the effect of x1 on p depends on x2.

The best fitting model (Table 3) included database size 
and percentage of environmental BioSamples with a 
McFadden’s R squared value of 0.939, which indicates a 
good prediction accuracy. Due to multicollinearity when 
adding more factors into the model, we selected the two-
factor model with an interaction term as the final predic-
tion model.

Positive coefficients for the environmental percent-
age factor and interaction term indicated that with the 
same database size a higher percentage of environmental 
BioSamples is associated with higher match rate. Regard-
ing the relationship between database size and the match 
rate, when environmental percentage is fixed and higher 
than 15%, larger database size is correlated with higher 
match rate (Fig. 3). For instance, under hypothetical con-
ditions, when environmental percentage reaches 70%, 
the odds of getting matched clinical BioSamples was pre-
dicted to rise 4% with every 1000 isolates deposited into 
database(Fig. 3b). However, if the environmental percent-
age is lower than 15% and fixed, with larger database size, 
the tendency of match rate decreases.

To evaluate our prediction model, which was built 
upon data before December 31, 2021, we compared pre-
dicted match rates with actual quarterly rates in 2022. We 
found that the average absolute difference between pre-
dicted match rate and the actual match rate are 5% and 
1% for Salmonella and E. coli respectively. The model was 
not as good for L. monocytogenes where the average abso-
lute difference is 14%, due to the big jump of actual match 
rate in the first quarter.

Discussion
The results presented here show that for the database 
sizes we investigated the match rate of clinical isolates 
to non-clinical isolates is 33% for L. monocytogenes, 46% 
for Salmonella, and 7% for E. coli. While comparisons to 
other studies are difficult given the estimate of a match 
rate is highly dependent on the composition and size of 
the database and the genetic threshold (SNP distance) 
at which a match is defined, our results are in line with 

what has been seen by others. For example, Sanaa et al. 
[9] based on NCBI Pathogen Detection data from 2018 
and a SNP distance threshold of 20 (the same value used 
here) found the probability that a new clinical would 
match an existing food or environmental isolate was rela-
tively low ~ 30% for Salmonella and ~ 12% for L. monocy-
togenes. Although lower than the values we observed, the 
authors note that the probability of a match appeared to 
be increasing.

In modeling the match rate, we found that variation 
exists overtime within and among foodborne patho-
gens in the epidemiologically informative match rate. 
The drastic variation is likely the primary reason that 

Table 3 Multiple logistic regression estimates

Estimate Std. Error p value

(Intercept) − 3.90E + 00 2.38E−02  < 0.001

Number of total BioSamples − 1.09E−05 1.62E−07  < 0.001

Percentage of environmental 
BioSamples

3.72E + 00 5.44E−02  < 0.001

Number of total BioSamples: 
percentage of environmental 
BioSamples

7.14E-05 6.48E−07  < 0.001

0.1

0.2

0.3

0.4

0.5

5000 10000 15000 20000
Database size

P
re

di
ct

ed
 m

at
ch

 r
at

e

Percentage of 
environmental
biosamples

10%

20%

40%

50%

60%

70%

80%

b)

Salmonella

Listeria

Ecoli

2014 2016 2018 2020 2022

2016 2018 2020 2022

2014 2016 2018 2020 2022
0.00

0.02

0.04

0.06

0.1
0.2
0.3
0.4
0.5

0.1
0.2
0.3
0.4
0.5

Time

Q
ua

rt
er

ly
 m

at
ch

 r
at

e

Data displayed

Fitting data

Predicted value

Real 2022 data

a)

Fig. 3 a Utilizing logistic regression for quarterly match rate 
prediction, with corresponding confidence intervals shaded in grey. 
b Employing logistic regression models to forecast hypothetical 
database performance across varying percentages of environmental 
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areas represent confidence intervals of predicted values
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prospective modeling to estimate the probability that any 
future clinical sample will be a match to a non-clinical 
isolate is currently difficult. Although studies have found 
there is a seasonality to the prevalence of certain Sal-
monella serovars [10], our tests of models incorporating 
seasonality showed no consistent relationship, which is 
also likely due to the variation and erratic pattern to the 
match rate overtime. Perhaps this is a surprising result 
where even after 10 plus years of populating such data-
bases and 750,000 isolates, as is the case with Salmonella, 
the information content and probability of a match have 
not stabilized. However, modeling the match rate had 
good performance and provides a means for estimating 
whether future clinical samples will match non-clinical 
samples in the database. Such databases will continue to 
routinely provide actionable information where they are 
a critical tool for foodborne disease surveillance and out-
break detection and resolution.

Limitations
Limitations are discussed throughout and include, but 
are not limited to, the data that we analyzed do not repre-
sent a random sample and results will vary depending on 
the SNP threshold used to determine a match.
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