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Introduction
Regulated protein degradation in eukaryotic cells is 
carried out by the 26S Proteasome, that recognizes 
proteins modified by chains of a conserved protein 
called Ubiquitin (Ub). The 26S Proteasomes belong 
to an ancient superfamily of barrel-shaped proteases 
that are ATP-dependent [1, 2]. They are composed of a 
proteolytic core particle (CP) and a regulatory particle 
(RP). CP has four heptameric rings of alpha and beta 
subunits and houses six proteolytic active sites con-
tributed by N-terminal threonine residues of β1, β2, 
and β5 subunits [3].

Proteasome activity is essential for developmental 
changes of Trypanosoma, Plasmodium, Leishmania, 
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Abstract
Objective Proteasomes are conserved proteases crucial for proteostasis in eukaryotes and are promising drug targets 
for protozoan parasites. Yet, the proteasomes of Entamoeba histolytica remain understudied. The study’s objective 
was to analyse the differences in the substrate binding pockets of amoeba proteasomes from those of host, and 
computational modelling of β5 catalytic subunit, with the goal of finding selective inhibitors.

Results Comparative sequence analysis revealed differences in substrate binding sites of E. histolytica proteasomes, 
especially in the S1 and S3 pockets of the catalytic beta subunits, implying differences in substrate preference and 
susceptibility to inhibitors from host proteasomes. This was strongly supported by significantly lower sensitivity 
to MG132 mediated inhibition of amoebic proteasome β5 subunit’s chymotryptic activity compared to human 
proteasomes, also reflected in lower sensitivity of E. histolytica to MG132 for inhibition of proliferation. Computational 
models of β4 and β5 subunits, and a docked β4-β5 model revealed a binding pocket between β4-β5, similar to that 
of Leishmania tarentolae. Selective inhibitors for visceral leishmaniasis, LXE408 and compound 8, docked well to this 
pocket. This functional and sequence-based analysis predicts differences between amoebic and host proteasomes 
that can be utilized to develop rationally designed, selective inhibitors against E. histolytica.
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Toxoplasma, and Entamoeba [4–6]. Therefore, efforts 
have been made in recent times for development of 
selective inhibitors of parasite proteasomes with promis-
ing results [7–9]. Entamoeba histolytica, the third lead-
ing cause of death due to protozoan parasites [10] has a 
well-developed, functional ubiquitin-proteasome system 
(UPS) [11]. Proteasome activity is required for its growth 
and development [12]. Development of drug resistance 
[13] and the absence of any new drug against this parasite 
requires urgent research to develop tools to inhibit para-
site proliferation and development to prevent new infec-
tions. Selective proteasome inhibitors can fulfil these 
goals.

The current study was designed towards a compara-
tive sequence analysis of the 26  S proteasome CP beta 
subunits of E. histolytica to identify potential struc-
tural and functional differences from human protea-
somes. Our analysis revealed a pocket between the β4 
and β5 subunits of amoebic proteasomes that shows a 
higher similarity to a similar pocket in Leishmania than 
to humans. Proteasome inhibitors that selectively bind 
to this pocket in Leishmania have been developed and 
are currently in clinical trials [8, 14]. We have evaluated 
these compounds, LXE408 and Compound 8, along with 
a known proteasome inhibitor bortezomib, in docking 
studies with a computational model of β4–β5 subunits of 
amoeba that we developed. This study highlights the dif-
ferences between the host and amoebic proteasomes in 
the catalytic subunits that can be exploited for screening 
and rationally designing selective inhibitors of E. histo-
lytica proteasomes.

Methods
Sequence retrieval and multiple sequence alignment
Protein sequences were retrieved from the NCBI data-
base using Uniprot accession numbers (Supplementary 
Table S1). BLAST tool of NCBI (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) was used to search the non-redundant 
protein sequence (nr) of Entamoeba histolytica HM-1: 
IMSS (taxid: 294,381) using BLOSUM45 substitution 
matrix. Multiple Sequence Alignments (MSA) were 
generated using CLUSTAL-O tool [15]. Jalview [16] and 
MEGA-X [17] were used to analyse motifs and residues.

Proliferation assay
E. histolytica HM1:IMSS and HCT8 cells were cul-
tured in TYI-S33 [18] and RPMI media, respectively. 
Cells were seeded in 96-well plates, and treated with 
MG-132 after attachment. Cells were washed after 
48 h with phosphate buffered saline followed by MTT 
assay and absorbance recorded at 570 nm.

Proteasome activity assay
Crude lysates were analysed for proteasome activ-
ity using SUC-LLVY-AMC as fluorescence substrate 
as per manufacturer’s protocol (Cayman Item no. 
10,008,041).

Homology modelling of β4/β5 subunits of proteasome
The homology models were built using SWISS-
MODEL [19]. The template was selected by Global 
Model Quality Estimate (GMQE) [19] and Quater-
nary Structure Quality Estimate (QSQE) values [20]. 
Best quality models were selected based on clash 
scores, MolProbity score, and query coverage % iden-
tity. Energy minimization of the models was done with 
YASARA [21].

The models were validated using SAVES V6.0 and 
PROSA. The docking of β4 and β5 subunits was per-
formed with HADDOCK 2.4 using default parameters 
[22]. The best docked model was selected based on the 
lowest RMSD from the template.

The AutoDock 4.2 tool [23] was used to dock the inhib-
itor molecule onto the modelled protein (β4–β5). The 
LXE408 and bortezomib were docked using the reported 
residues/surface for their interactions with β4 and β5 
subunits of Leishmania tarentolae proteasome [24]. 
The grid dimensions for LXE408 and bortezomib were 
defined at 78 × 66 × 78 and 72 × 62 × 74, respectively, with 
a spacing of 0.33Å. All the essential charges were cal-
culated, added and allotted to all the atoms of the mod-
elled protein (β4–β5). For Compound 8 [8], the grid box 
was fixed at the grid-centre of 142.302 × 117.224 × 96.494 
with grid dimension fixed at 62 × 48 × 58 with a spacing 
of 0.33 Å. Hundred runs were performed and twenty-
two clusters out of 100 docking poses were generated by 
taking a cut-off value of 2.0Å using the default Autodock 
4.0 parameters for all dockings, Cluster one was chosen 
based on the highest docking energy and the most pop-
ulated pose was selected for further analysis. The best 
docked structure was selected based on the HADDOCK 
score.

Results
Sequence analysis of E. histolytica proteasomes
Comprehensive BLAST search of the Entamoeba histo-
lytica HM-1: IMSS (taxid: 294,381) genome identified all 
the subunits of the 26S proteasome, proteasome chaper-
ones and interacting proteins (PIPs) as expected from the 
ancient and essential nature of this protease (Supplemen-
tary Table S1).

Multiple sequence analysis and domain architecture of 
the beta subunits showed conservation of domains and 
features of human counterparts, while displaying some 
key differences as detailed below.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Substrate binding pockets
Amoebic beta subunits showed a 31–56% homology 
to the beta subunits of the humans (Supplementary 
Table S1). The N-terminal threonine residue of cata-
lytic subunits and residues required for the catalytic 
activity (Asp17, Lys33) were conserved (Supplemen-
tary Fig. S1). The enzyme activity is largely determined 
by the size, composition, and architecture of the sub-
strate binding pockets formed by the 45th position 
of β-subunits along with residues at 20, 31, 33, 49, 53 
positions [25]. Additionally, residues in S1 pocket at 21 
and 45 in β1, and 115, 116 in β5 are replaced in immu-
noproteasomes resulting in an altered pocket size and 
activity.

A comparative of S1, S2 and S3 pockets for the three 
catalytic subunits of amoeba showed significant dif-
ferences from host (Fig.  1; Table  1). Amoebic β1 shows 
substitutions in four out of six residues making up the S1 
pocket, two being not conservative replacements. The S2 
pocket shows a conservative but slightly smaller residue, 
while there is a substitution of all three residues in the S3 
pocket compared to human β1.

Presence of Gly in S1 pocket of β2 allows a larger 
pocket that is limited at its lower end by Asp53. In Ent-
amoeba, Gly at 45th position is conserved (Fig. 1A) but 
Asp53, is replaced with Thr at 53rd position (Supp. Fig 
S1B). The β2 Asp53 forms salt-bridge interactions with 
basic residues in substrates to give β2 its tryptic-like 
activity. Threonine cannot participate in salt-bridge 
formation but can form a hydrogen bond, which has a 
significantly lower bonding energy compared to a salt-
bridge. This may result in a slightly lowered affinity 
for the basic substrates in amoebic β2. It needs to be 
experimentally determined if this may result in lower 
tryptic activity of the amoeba proteasomes compared 
to human β2 for basic substrates.

Human β5 has Met at 45th position which is conserved 
in amoeba. But S3 of amoebic β5 is likely to be shal-
lower than human constitutive β5. Additionally, Ala27 is 
replaced with Ser in amoeba, making it more hydrophilic 
(Fig.  1A). In immunoproteasomes also, S3 pocket has a 
Ser instead of Ala.

Moreover, Met45 side chain in the S1 pocket is stabi-
lized by Asn53 in immunoproteasomes which replaces 
Ser of the constitutive proteasome. In E. histolytica, 
Ala is present at this position, which may increase the 
distance between the two residues in E. histolytica and 
may have consequences for substrate selection and 
inhibitor binding. The S3 site of E. histolytica has an 
Arg instead of aliphatic A22 in human β5 (Fig.  1A). 
This could result in a change in the size and charge of 
the S3 site. Further, in immunoproteasomes, two resi-
dues, Ser115 and Glu116 of human constitutive β5 are 
substituted with Glu115 and His116. Residues at 115 

and 116 are critical for substrate binding and change 
the substrate cleavage preference of immunoprotea-
some β5 subunit [26]. Entamoeba has Asp and Gly at 
these positions (Supplementary Fig. S1). Presence of 
Gly instead of Glu/His will change the polarity and 
size of the pocket and may allow substrates with larger 
amino acids to be accommodated by amoebic β5.

This comparative analysis suggests crucial differences 
between the residues in the substrate binding pockets of 
the catalytic subunits of human and Entamoeba. Inter-
estingly, some differences were also noted in substrate 
binding pockets between different Entamoeba species 
(Table 1).

Sensitivity of E. histolytica proteasomes to MG132
Significant differences in the substrate binding pock-
ets of amoebic proteasomes prompted us to examine 
whether amoebic proteasomes have a different sensi-
tivity to peptide-based proteasome inhibitors com-
pared to human proteasomes. A selective, reversible 
peptide aldehyde,

Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) 
was used to check its effect on the chymotryptic activity 
of E. histolytica proteasomes. The S1 and S3 pockets of 
β5 subunit of E. histolytica is likely to be less hydropho-
bic than human β5 subunit, and the S3 pocket likely to 
be smaller due to presence of Arg. The IC50 values for 
MG132 mediated inhibition of chymotryptic activity of 
amoebic and human colonic epithelial cell line HCT8 
cells were 2.61 and 1.10 µM respectively (Fig. 1B). Thus, 
E. histolytica proteasomes are less sensitive to inhibition 
by MG132. This was supported by a higher concentra-
tion of MG132 that was required to suppress the prolif-
eration of amoebic cells by 50% compared to that needed 
for HCT8 cells (Fig. 1C). These results strongly support 
differences in the substrate binding pockets of amoebic 
proteasomes compared to those of the host cells.

Differential sensitivity of amoebic proteasomes to 
MG132 supported our hypothesis of structural-func-
tional differences of amoebic proteasomes from host. We 
used computational modelling to assess other potential 
differences.

Homology modelling of amoebic β4-β5 subunits
3D-structures of β5 and its adjacent subunit β4, were 
generated using SWISS-MODEL. Leishmania tarento-
lae proteasome 20S subunit complexed with LXE408 
(PDB Id: 6TCZ) and Leishmania tarentolae protea-
some 20S subunit complexed with bortezomib and 
LXE408 (PDB Id: 6TD5) structures showed the high-
est sequence similarity of 34.6% and 53.7% with Ent-
amoeba histolytica β4 and β5 subunits, respectively, 
with about 98% sequence coverage, and the former was 
chosen as the template to build the models (Fig. 2A, B). 
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Fig. 1 Substrate binding pockets of β1, β2 and β5 subunits of E. histolytica and the effect of MG132 on proteasomes activity and cell viability. (A) Com-
parison of human and E. histolytica residues present in the S1, S2 and S3 substrate binding pockets of the three catalytic subunits is shown. Size of the 
circle shows relative size, and residues with similar physiochemical properties are shown in similar colours. Green, hydrophobic; pink, polar; blue, basic; 
yellow, acidic. (B) Normalized and fitted curves for the chymotryptic activity of proteasomes at varying concentrations of MG132 in E. histolytica and Hct8 
cells. Data are an average of three replicates with bars showing ± SD. (C) Normalized and fitted curves of cell viability of E. histolytica and Hct8 cells after 
growing at different concentrations of MG132 for 48 h. Data are an average of three replicates with bars showing ± SD
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Model quality estimates by various parameters collec-
tively established that both models are of good qual-
ity and free from steric clashes (Supplementary Fig. 
S2–S4 and Supplementary Tables S2-S3). L. tarento-
lae shows a pocket between β4 and β5 that has critical 
differences from the human proteasome (Supplemen-
tary Fig. S5) and selective compounds that bind to 
this pocket in L. tarentolae and L. donovani have been 
developed that are currently in clinical trial. Since the 
highest similarity of amoebic proteasome subunits was 
with the L. tarentolae structures, the modelled amoe-
bic structures (β4 and β5) were docked (Fig.  2C) and 
overlay of the docked modelled structure onto the L. 
tarentolae and human subunits showed Cα RMSD 
value of ~ 0.96 Å (Fig. 2D, E).

The binding of LXE408, bortezomib, and compound 8 
to the β4–β5 model using a defined pocket, as well as by 
blind docking, showed the compounds occupying bind-
ing surfaces similar to that observed for the leishmania 

proteasome (Fig.  3). The estimated binding energies of 
LXE408 and compound 8 were − 9.5 and − 8.9 kcal mol–1, 
respectively, indicating strong binding. The binding pock-
ets and critical interacting residues for LXE408, bortezo-
mib and compound 8 in E. histolytica were conserved 
compared to those of Leishmania (Fig. 3D, E, G). These 
findings have important implications for development of 
specific and selective inhibitors against amoebiasis.

Discussion
Proteasomes have emerged as an attractive target for 
anti-parasitic drugs as they inhibit the growth and 
development of many protozoa. Large-scale pheno-
typic screening for proteasome inhibitors has led to 
development of several selective inhibitors for try-
panosomatids, Leishmania and Plasmodium. Ent-
amoeba histolytica proteasome has not received much 
attention despite amoebiasis being a global disease 

Table 1 Differences between human and amoebic substrate binding pockets of the catalytic subunits 
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Fig. 2 Computational models of β4 and β5 subunits of E. histolytica. Representative three-dimensional molecular structures of (A) β4, and (B) β5 subunits 
of E. histolytica.(C) Docked model of β4 and β5 of E. histolytica.(D) Overlay of the modelled structure of β4-β5 of E. histolytica with L. tarentolae and (E) 
human structures. The chains are rendered in the colors indicated for each subunit
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contributing to 9% of all deaths of children under the 
age of 5 years [27].

Substitution of a few residues changes the activ-
ity of immunoproteasome catalytic subunits. It is likely 
that the S1 pocket of amoebic β1 has both size and 
charge differences from the human constitutive and 

immunoproteasome β1 subunits. Amoebic β5 appears to 
have a charged, hydrophilic S1 and shallower S3 pocket 
compared to human β5. Additionally, it may allow sub-
strates with larger amino acids to be accommodated. Our 
data showing significantly higher IC50 values of amoebic 

Fig. 3 Docking of LXE408, bortezomib and compound 8 onto β4-β5 modeled structure of Entamoeba histolytica. The surface structure of the β4-β5 
model of E. histolytica depicting the binding surface for (A) LXE408. The binding pocket has been highlighted in orange and yellow color. (B) Binding sur-
face for bortezomib. The binding pocket has been highlighted in yellow color. (C) An overlay of LXE408 and Bortezomib inhibitor’s binding surface onto 
the β4-β5 model of E. histolytica. The binding pocket has been highlighted in blue for LXE408 and in red for common LXE408 and bortezomib binding. 
(D) The zoom-in stick representation of the binding pocket of LXE408 and (E) bortezomib. All the crucial contacts are depicted by dotted blue lines. (F) 
Surface representation and (G) interacting residues of the β4-β5 model of E. histolytica with compound 8
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β5 for MG132 is strongly indicative of key differences 
between amoebic and human proteasomes.

Selective proteasome inhibitors against a number of 
protozoa have been reported, some, including LXE408 
and compound 8, being in clinical trials [8, 26–28]. Since 
these compounds showed a good docking to our β4/β5 
model in the same pocket as in Leishmania, it is likely 
that these, and similar compounds may selectively inhibit 
amoeba proteasomes. Additionally, differences in the 
β1 substrate binding pocket can be exploited to develop 
selective inhibitors.

Our analysis provides a framework to explore the 
biochemical and structural understanding of amoebic 
proteasomes that will help in development of selective 
inhibitors of amoebic proteasomes. Since proteasome 
activity is essential for developmental changes, these 
inhibitors will be promising tools to break the infection 
cycle in amoeba endemic countries.

Limitations
The conclusions drawn from docked model are lim-
ited in that they require confirmation by experimental 
analysis with compounds similar to LXE408 and com-
pound 8. Determination of proteasome activity, IC50 
values, selectivity and specificity analyses are required 
to validate the results of this study.
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