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Abstract 

Nonlinear time-fractional partial differential equations (NTFPDEs) play a great role in the mathematical modeling 
of real-world phenomena like traffic models, the design of earthquakes, fractional stochastic systems, diffusion pro-
cesses, and control processing. Solving such problems is reasonably challenging, and the nonlinear part and fractional 
operator make them more problematic. Thus, developing suitable numerical methods is an active area of research. 
In this paper, we develop a new numerical method called Yang transform Adomian decomposition method 
(YTADM) by mixing the Yang transform and the Adomian decomposition method for solving NTFPDEs. The deriva-
tive of the problem is considered in sense of Caputo fractional order. The stability and convergence of the developed 
method are discussed in the Banach space sense. The effectiveness, validity, and practicability of the method are 
demonstrated by solving four examples of NTFPEs. The findings suggest that the proposed method gives a better 
solution than other compared numerical methods. Additionally, the proposed scheme achieves an accurate solu-
tion with a few numbers of iteration, and thus the method is suitable for handling a wide class of NTFPDEs arising 
in the application of nonlinear phenomena.

Keywords Caputo fractional derivative, Time-fractional nonlinear partial differential equations, Yang transform, 
Adomian decomposition method

Introduction
Different natural phenomena that appear in various areas 
of science and engineering can be successfully dem-
onstrated by using the notion of fractional calculus [1]. 
Fractional calculus plays a great role in the mathematical 
modeling of real-world phenomena, for example, reac-
tion–diffusion processes [2, 3], decentralized wireless 

networks [4, 5], water wave movement [6, 7], signal pro-
cessing [8, 9], population growth [10, 11], design of earth-
quake [12, 13], traffic models with fractional derivatives 
[14], diffusion processes [15], fractional stochastic sys-
tems [16–19], control processing [20, 21], medical sci-
ences [22] and many other physical processes [23–26].

In most cases, fractional differential equations (FDEs) 
are considered a generalization of differential equations 
(DEs) because they describe functional values at every 
continuous point without losing any memory or heredi-
tary behaviors of natural phenomena. For this reason, 
many authors have studied FDEs for modeling and deep 
understanding of real-world natural phenomena such as 
business models with fractional derivations, evaluation 
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of viscoelastic surface characteristics, human behavior in 
the field of mathematical psychology [27, 28], models of 
love between humans [29], and models of happiness and 
in other fields of applications [23–25, 30, 31].

Nonlinear time-fractional partial differential equations 
(NTFPDEs) have played an alternative role in diverse 
fields such as applied science, mathematics, physics, 
medicine, biology, geology, chemistry, and engineering 
due to the non-locality nature of the power-law struc-
ture with arbitrary positive order. In the modern age, it is 
impossible to model many real-world problems without 
using nonlinear FPDEs. Fractional calculus can be called 
this century’s calculus because of the diversity of appli-
cations in every discipline of applied science, technology, 
and engineering [32–34].

In applied mathematics and many other areas of sci-
ence, it is important to obtain accurate solutions to 
FPDEs. In general, FPDEs do not have closed-form 
exact solutions for most problems, and it is very diffi-
cult to obtain exact solutions [35]. For this reason, vari-
ous numerical methods have been developed for solving 
linear and nonlinear FPDEs. For instance, Mohamed and 
Torky [33] proposed the Legendre multiwavelet Galer-
kin method to solve the conformable fractional modi-
fied KdV–ZK equation. Singh et  al. [36] announced the 
homotopy perturbation Sumudu transform method for 
nonlinear FPDEs arising in the spatial diffusion of biolog-
ical populations. Wang and Liu [37] familiarized them-
selves with the new Sumudu transform iterative method 
for the time-fractional Cauchy reaction–diffusion equa-
tion. Ziane et  al. [38] introduced the Elzaki transform 
combined with the variational iteration method for 
PDEs of fractional order. Dehestani et  al. [39] proposed 
Legendre–Laguerre functions based on Legendre and 
Laguerre polynomials for solving a class of linear and 
nonlinear time–space fractional PDEs with variable 
coefficients. Dehestani et  al. [40] presents the discrete 
scheme based on Genocchi polynomials and fractional 
Laguerre functions to solve multiterm variable-order 
time-fractional PDEs in the large interval. Dehestani 
et  al. [41] familiarized themselves with the fractional-
order Genocchi–Petrov–Galerkin method to investigate 
the approximate solution of time–space fractional Fok-
ker–Planck equations. Wang et  al. [42] proposed two 
analytical methods, the residual power series method and 
the homotopy analysis transform method, to solve NTF-
PDEs with proportional delay.

Recently, researchers have used several numeri-
cal methods to solve different types of NTFPDEs. For 
example, Bekela et al. [32] applied the hybrid numerical 
method of Laplace-like transform and variational theory 
for solving NTFPDEs with proportional delay. Malyk 
et  al. [43] employed the Yang–Abdel–Cattani derivative 

operator for solving the nonlinear fractional diffusion 
equation. The numerical method is presented by using 
a novel spline technique for solving fourth-order time-
fractional evolution problems [44]. Al-Deiakeh et al. [45] 
introduced an approximation for nonlinear FPDE using 
the combination of the multi-Laplace transform and 
ADM. Mallick et al. [46] proposed an iterative method for 
solving time-fractional PDEs with proportional delays. A 
wide application of NTFPDEs in many real life phenom-
ena and the growing of to search for suitable numeri-
cal methods motivate us to propose a hybrid numerical 
method called the Yang transform Adomian decomposi-
tion method (YTADM) for solving NTFPDEs.

George Adomian introduced a modern mathematical 
method to solve nonlinear DEs in the 1980s, described as 
ADM [47–49]. Similarly, another powerful method found 
by Yang to solve linear PDEs was described as YT, which 
transforms the initial DEs into an algebraic equation 
[50–52]. However, it does not handle nonlinear terms in 
NTFPDEs because of the difficulties that are caused by 
nonlinear terms. ADM is a powerful numerical method 
for solving nonlinear DEs, but it does not properly 
decompose the fractional order parts. The main objective 
of this study is to combine two methods for solving the 
NTFPDEs: YT is used to decompose FDEs into algebraic 
equations, and ADM is used to decompose the nonlin-
ear terms in NTFPDEs into a series solution. The stabil-
ity and convergence conditions of the proposed method 
were analyzed. In addition, some test examples of NTF-
PDEs are solved to illustrate the capability, accuracy, and 
simplicity of the proposed method.

Furthermore, to demonstrate the versatility and robust-
ness of the YTADM in different areas of science, we take 
four examples that have a wide range of applications in 
various fields of science and technology. Accordingly, 
first we considered the nonlinear time-fractional New-
ell-Whitehead-Segel equation (NWSE), which predicts 
the existence of traveling wave patterns. These kinds of 
systems can be observed in a variety of natural systems, 
including physical, biological, and chemical systems. 
For example, in medicine: the mechanisms of spread-
ing epidemic diseases, healing wounded tissue, chemical 
reactions of multiple substances, and neutron diffusion 
theory all belong to reaction–diffusion systems [49].

Then, we considered the nonlinear fractional Cauchy 
reaction–diffusion equation (CRDE), which is used to 
describe the evolution of a system over time with reaction 
and diffusion processes in various fields. For instance, 
in biology and medicine, these equations are used to 
model the spreading of diseases, tumor growth, etc. In 
chemistry, CRDEs are employed to understand chemi-
cal reactions that exhibit complex kinetics and diffusion 
processes. In population dynamics, these equations are 
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employed to model the behavior of ecological and natu-
ral populations. In material science, CRDEs are expended 
for modeling transport marvels in porous media whereas 
in finance and economics, they are used for modeling the 
financial markets with memory goods and long-range 
dependence [47, 48], and references therein.

Hereafter, we solve the nonlinear time-fractional Forn-
berg-Whitham equation (FWE). The FWE is a type of 
traveling wave equation and have variety of applications 
in physics and engineering. Such as in the propagation of 
electrical signals and optimization of guided communica-
tion systems. In mathematical physics to investigate how 
non-linear dispersive water waves break [50]. Final, we 
considered one problem from nonlinear time-fractional 
Fokker–Planck equation (FPE). The nonlinear time-frac-
tional FPE arises in various fields like in chemistry, natu-
ral science, including astrophysics problems, biological 
applications, chemical physics, and other fields [51].

Here, the numerical results obtained by YTADM 
are summarized in tables and figures to illustrate eas-
ily understanding for various fractional order α . For the 
fractional order α = 1 , the obtained numerical solution 
have excellent agreement with the exact solution. It is 
evident from the theory of fractional calculus that the 
approximate solution of the problem with derivative 1 
continuously tends to the exact solution when the frac-
tional derivative α(m− 1 < α ≤ m) tends to positive 
integer m = 1[52].

The remaining paper is organized in the following way: 
Sect.  "Preliminaries" of this work gives detailed con-
cepts related to fractional integrals, derivatives, and YT. 
Sect. "A hybrid numerical method for solving NTFPDEs" 
familiarizes reader with the mathematical formulation of 
YTADM using YT and ADM. Sects. "Stability analysis of 
YTADM to solve NTFPDEs" and "Convergence analysis 
of YTADM for solving NTFPDEs" offer stability and con-
vergence of the proposed method in the Banach space 

sense. Sect. "Numerical results and discussions" presents 
a numerical simulation of the method on some NTFP-
DEs. Finally, the conclusion of the method is presented in 
Sect. "Conclusion".

Preliminaries
This part is devoted to some basic concepts and defini-
tions of YT, fractional integrals, and fractional deriva-
tives, which are essential for accepting the remainder of 
the monograph.

Definition 2.1 [6, 7]. A real function f (t), t > 0 is in 
the space Cτ , τ ∈ R if there exists a real number (p > τ) , 
such that f (t) = tpf1(t) , where f1(t) ∈ C[0,∞) , and it 
is said to be in the space Cn

τ  if f (n) ∈ Cτ , n ∈ N  , clearly 
Cτ ⊂ Cρ if ρ ≤ τ.

Definition 2.2 [24, 25]. The left sides Riemann–Liou-
ville fractional integral of order α ≥ 0 , of a function 
f (t) ∈ Cτ , τ ≥ −1 is defined as.

where Ŵ(.) is the gamma function.

Definition 2.3 [7, 55]. The fractional derivative of f (t) 
in the Caputo sense is defined as.

where aCD
α

t  is the Caputo fractional derivative operator 
of order α , n− 1 < α ≤ n, n ∈ N .

Definition 2.4 [56, 57]. The YT is defined over the set 
of function.

D−α
a,t f (t) =











1

Ŵ(α)

t
∫
a
(t − µ)α−1f (µ)dµ,α < 0, t > 0,

f (t), α = 0

a
CD

α

t f (t) =
1

Ŵ(n− α)

∫ t

a
(t − µ)n−(α+1)f (n)(µ)dµ,

A =

{

f (t) : ∃C ,m1,m2 > 0,
∣

∣f (t)
∣

∣ < Ce
|t|
mj , ift ∈ (−1)j × [0,∞), j = 1,2

}

,
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where C is constant and m1,m2 are either finite or infinite 
by the following integral formula

It converges if the limit of the integral exists, and 
diverges if not. Accordingly, the following results fol-
lows directly from the above integral formula of YT [56, 
59]:

1. Y [1] = v,
2. Y [t] = v2,
3. Y [tn] = n!vn+1 = Ŵ(n+ 1)vn+1, n ∈ N ,

4. Y [tα] = Ŵ(α + 1)vα+1,α > 0,

5. Y [af (t)+ bg(t)] = aY [f (t)]+ bY [g(t)], linearity 
property.

Definition 2.5 [56, 59]. The YT of the nth derivative of 
the function f (t) is defined as

Definition 2.6 [58]. The YT of the function f (t) in the 
Caputo fractional derivative is defined as.

for T (v) = Y [f (t)] and n− 1 < α ≤ n, n ∈ N .

Definition 2.7 ([32]) Let P : X → X be a mapping of a 
set X into itself. The fixed point of P is x ∈ X which is 
mapped onto itself, that is,

the image Px coincides with x.

Definition 2.8 (Contraction [32]) Let X = (X , d) be a 
metric space. A mapping P : X → X is called a contrac-
tion on X if there is 0 ≤ ε < 1 such that, for all x, y ∈ X,

Theorem 2.1 (Banach’s fixed point theorem [32]) Con-
sider a metric space X = (X , d), where x  = ∅. Suppose 
that X is complete, and let P : X → X be a contraction on 
X. Then P has a unique fixed point.

Theorem 2.2 [60]. Let (X , ‖.‖) be a Banach space and P 
be a self-map of X (P : X → X), satisfying.

Y [f (t)] = T (v) =

∫ ∞

0

e
−t
v f (t)dt, v > 0.

Y
[

f n(t)
]

=
T (v)

vn
−

n−1
∑

k=0

f (k)(0)

vn−(k+1)
.

Y
[

0
CDα

t f (t)
]

=
T (v)

vα
−

n−1
∑

k=0

f (k)(0)

vα−(k+1)
,

Px = x,

d
(

Px,Py
)

≤ εd
(

x, y
)

.

then P is Picard, P-stable.

A hybrid numerical method for solving NTFPDEs
In this section, we derive a hybrid numerical method that 
uses YT and ADM. We named this developed method 
YTADM. To illustrate the basic idea of this method, we 
consider the following general NTFPDEs with a source 
term [38, 58]

with the initial condition

where 0CDα
t = ∂α

∂tα  is the Caputo fractional derivative of 
order α with respect to t , R is the linear differential opera-
tor, N  represents the general nonlinear differential opera-
tor and f (x, t) is the source term. To develop YTADM for 
solving (1) and (2), we follow the following steps.

Step 1: Apply YT on both sides of (1) to obtain

By using Definition 2.6 we transform the fractional 
derivative on the left side of (3) in to

Note that in this step, YT changes the fractional deriva-
tive into an algebraic equation, and using the given initial 
condition, we can rewrite (4) as

where T (x, v) = Y [u(x, t)].
By the linearity property of the YT, the above equation 

becomes

Step 2: Apply the inverse YT on both sides of (5), to 
obtain

∥

∥Px − Py
∥

∥ ≤ C�x − Px� + ε
∥

∥x − y
∥

∥, ∀x, y ∈ X ,C ≥ 0, 0 < ε < 1,

(1)
C
0 D

α
t u(x, t)+ Ru(x, t)+ Nu(x, t) = f (x, t),α ∈ [0, 1],

(2)u(x, 0) = g(x),

(3)
Y
[

0
CDα

t u(x, t)
]

+ Y [Ru(x, t)]+ Y [Nu(x, t)] = Y [f (x, t)].

(4)
Y [u(x, t)]

vα
−

n−1
∑

k=0

vk−α+1u(k)(x, 0)

= Y [f (x, t)− Ru(x, t)− Nu(x, t)].

T (x, v)

vα
= v1−αu(x, 0)+ Y [f (x, t)− Ru(x, t)− Nu(x, t)],

T (x, v) = vu(x, 0)+ vαY [f (x, t)− Ru(x, t)− Nu(x, t)],

(5)
T (x, v) = vu(x, 0)+ vαY [f (x, t)]− vαY [Ru(x, t)+ Nu(x, t)].
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where u(x, t) = Y−1[T (x, v)].

Step 3: In order to decompose the nonlinear term in 
NTFPDE and generate a series solution of the proposed 
method, the ADM is applied. The ADM defines the solu-
tion in an infinite series of linear terms as

and the nonlinear term in the problem expressed in 
terms of the Adomian polynomial as follows:

where

Step 4: Substituting the obtained values in (7) and (8) 
into (6), we obtain

Step 5: To obtain the component solutions of the pro-
posed method, we equating the terms on both sides of 
(10), and get the following relation

Step 6: Following component approximate solution, we 
obtain the general solution in a series form as

Note that it is impossible to find infinite component of 
solution. Hence, after (m+ 1)th truncation, the iteration 
formula of YTADM is given by

(6)
u(x, t) ,=u(x, 0)+ Y−1

[vαY [f (x, t)]]

− Y−1
[vαY [Ru(x, t)+ Nu(x, t)]],

(7)u(x, t) =

∞
∑

m=0

um(x, t),

(8)Nu(x, t) =

∞
∑

m=0

An(u),

(9)Am =
1

m!

dm

d�m

[

N

(

m
∑

i=0

�
iui

)]

�=0

,m = 1,2, . . .

(10)
∞
∑

m=0

um(x, t) = u(x, 0)+ Y−1
[

vα
(

Y [f (x, t)]
)]

− Y−1

[

vαY

[

∞
∑

m=0

Rum(x, t)+

∞
∑

m=0

Am(u)

]]

.

u0(x, t) = u(x, 0),

u1(x, t) = Y−1
[

vα
(

Y [f (x, t)]
)]

− Y−1
[vαY [Ru0(x, t)+ A0(u)]],

(11)
um+1(x, t) = −Y−1

[vαY [Rum(x, t)+ Am(u)]],m ≥ 1.

(12)

u(x, t) =

∞
∑

m=0

um(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ . . . .

(13)
um+1(x, t) = u(x, 0)+ Y−1

[vαY [f (x, t)− Rum(x, t)− Am(u)]],

which is the (m+ 1)th approximate solution of the NTF-
PDE in (1) for 0 < α ≤ 1.

Stability analysis of YTADM to solve NTFPDEs
In this section, we discuss the stability analysis of the 
method presented in Sect.  "A hybrid numerical method 
for solving NTFPDEs". For this, we state and prove an 
essential condition concerning the stability of YTADM 
when it is applied to solve NTFPDEs. To reveal Picard 
stability, it enough to show that the mapping associ-
ated with YTADM in (13) satisfies the conditions of 
Theorem 2.2.

Theorem  3.1 Let (X, ‖.‖) be a Banach space and 
P : X → X be a self-map of X . Then, the iteration proce-
dure of YTADM defined by.

is P-stable if.

P(um(x, t)) =um+1(x, t) = u(x, 0)+ Y−1

[vαY [f (x, t)− Rum(x, t)− Am(u)]],

i) �Rum(x, t)− Run(x, t)� ≤ ε0�um(x, t)− un(x, t)� for 
some ε0 ∈ R+,

ii) �Am(u)− An(u)� ≤ ε1�um(x, t)− un(x, t)� for some 
ε1 ∈ R+,

iii) ε = (ε0 + ε1)�
tα

Ŵ(α+1)
� < 1.

Proof. First we show that P has a fixed point. To do 
this, for n,m ∈ N  , we have.

By subtracting (15) from (14), we obtain

(14)
P(un(x, t)) = u(x, 0)+ Y−1

[vαY [f (x, t)− Run(x, t)− An(u)]],

(15)
P(um(x, t)) = u(x, 0)+ Y−1

[vαY [f (x, t)− Rum(x, t)− Am(u)]].

(16)

P(un(x, t))− P(um(x, t))

= Y−1
[vαY [Rum(x, t)+ Am(u)]]

− Y−1
[vαY [Run(x, t)+ An(u)]].
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Taking the norm on both sides of (16), without loss of 
generality, we have

Using the linearity property of the YT and its inverse, we 
obtain.

Using the properties of the norm, we proceed.

Now, assuming that.
�Rum(x, t)− Run(x, t)� ≤ ε0�um(x, t)− un(x, t)� and.
�Am(u)− An(u)� ≤ ε1�um(x, t)− un(x, t)� for some 

ε0, ε1 ∈ R+.
Then, (17) becomes

However, from the properties of YT, we have.

Therefore, from (18), we obtain

where ε = (ε0 + ε1)

∥

∥

∥

tα

Ŵ(α+1)

∥

∥

∥

.

Hence, the self-mapping P has a fixed point. Now, we 
show P satisfies the condition in Theorem 3.1 . For this, 
we have

for C = 0, ε = (ε0 + ε1)

∥

∥

∥

tα

Ŵ(α+1)

∥

∥

∥

< 1. This shows that 
the conditions of Theorem  3.1 hold for self-mapping P . 
Hence, by Theorem  2.2, YTADM is Picard T-stable if 
ε < 1.

�P(un(x, t))− P(um(x, t))� =

∥

∥

∥

∥

Y−1[vαY [Rum(x, t)+ Am(u)]]

−Y−1[vαY [Run(x, t)+ An(u)]]

∥

∥

∥

∥

.

�P(un(x, t))− P(um(x, t))� =

∥

∥

∥

∥

Y−1[vαY [Rum(x, t)]]+ Y−1[vαY [Am(u)]]
−Y−1[vαY [Run(x, t)]]− Y−1[vαY [An(u)]]

∥

∥

∥

∥

.

(17)
�P(un(x, t))− P(um(x, t))� ≤ �Y−1

[vαY [Rum(x, t)− Run(x, t)]]� + �Y−1
[vαY [Am(u)− An(u)]]�.

(18)
�P(un(x, t))− P(um(x, t))� ≤

(

ε0�um(x, t)− un(x, t)�
+ε1�um(x, t)− un(x, t)�

)

�Y−1
[vαY [1]]�.

∥

∥

∥

Y−1
[vαY [1]]

∥

∥

∥

=

∥

∥

∥

Y−1
[vα(v)]

∥

∥

∥

=

∥

∥

∥

Y−1
[

vα+1
]

∥

∥

∥

=

∥

∥

∥

∥

tα

Ŵ(α + 1)

∥

∥

∥

∥

.

(19)

�P(un(x, t))− P(um(x, t))� ≤

(

ε0�um(x, t)− un(x, t)�
+ε1�um(x, t)− (x, t)�

)

∥

∥

∥

∥

tα

Ŵ(α + 1)

∥

∥

∥

∥

,

≤(ε0 + ε1)

∥

∥

∥

∥

tα

Ŵ(α + 1)

∥

∥

∥

∥

�un(x, t)− um(x, t)�,

≤ε�un(x, t)− um(x, t)�,

�P(un(x, t))− P(um(x, t))

� ≤ C�un(x, t)− P(um(x, t))�

+ ε�vn(x, t)− vm(x, t)�,

Convergence analysis of YTADM for solving NTFPDEs
In this section, we prove the convergence of YTADM 
when applied to NTFPDEs.

Theorem  3.2. Let (X , ‖.‖) be a Banach space and 
P : X → X be a mapping associated with YTADM be 
defined by (13). Then, P has a unique fixed point and the 

sequence solution {un(x, t)}∞n=0 converges to the fixed point 
of X with an initial value u0 ∈ X , if 0 < ε < 1 such that 
�un+1(x, t)� ≤ ε�un(x, t)�.

Proof. First, we show the existence of a fixed point of P . 
For this define that {sn} is the sequence of partial sums of 
the series Eq. (13) as,

Now, we show that {sn}∞n=0 is a Cauchy sequence in 
Banach space (X , ‖.‖) . For this purpose, we consider.

s0 = u0(x, t), s1 = u0(x, t)+ u1(x, t), s2

= u0(x, t)+ u1(x, t)

+ u2(x, t), . . . ,

sn = u0(x, t)+ u1(x, t)+ u2(x, t)+ · · · + un(x, t).

(20)

�sn+1 − sn� =�un+1(x, t)� ≤ ε�un(x, t)

� ≤ ε2�un−1(x, t)� ≤ . . .

≤ εn+1�u0(x, t)�.



Page 7 of 20Bekela and Deresse  BMC Research Notes          (2024) 17:226  

Now, for every m, n ∈ N  with n > m , then by using (20) 
and triangle inequality, we obtain

Since 0 < ε < 1 , the sum 1+ ε + ε2 + · · · + εn−m rep-
resents a finite geometric sequence whose total sum is 
1−εn−m

1−ε
 . Now, we have 1− εn−m < 1 ; then, (21) becomes.

Since u0(x, t) is bounded,

This implies that sn = sm . Therefore, {sn}∞n=0 is a Cauchy 
sequence and is convergent. Hence, P has a fixed point.

Next, to complete this proof, let {un(x, t)} converge 
to u ∈ X and we need to show that u is the unique fixed 
point of P . To achieve this, let l be another fixed point of 
P . Then, by (19), we have

Since,(1− ε) < 0 for 0 < ε < 1 , the above inequality 
can only hold if �u− l� = 0 implies u = l . Hence, u is the 
unique fixed point of P , which completes the proof.

Numerical results and discussions
In this section, four examples of NTFPDEs are solved by 
using the YTADM. The validity of the proposed numeri-
cal method is observed in terms of its absolute errors. To 
show the behaviors of the corresponding examples, some 
figures are also plotted for fractional orders α . All the 
results are calculated using MATLAB.

Example 4.1 [61]. Consider the following nonlinear 
time-fractional Newell-Whitehead-Segel equation.

(21)

�sn − sm� =�(sn − sn−1)+ (sn−1 − sn−2)+ . . .+ (sm+1 − sm)�,

≤�sn − sn−1� + �sn−1 − sn−2� + . . .+ �sm+1 − sm�,

≤εn�u0(x, t)� + εn−1�u0(x, t)� + . . .+ εm+1�u0(x, t)�,

≤εm+1�u0(x, t)�
(

1+ ε + ε2 + . . .+ εn−m
)

.

(22)�sn − sm� ≤
εm+1

1− ε
�u0(x, t)�.

lim
n,m→∞

�sn − sm� = 0.

∥

∥u− l
∥

∥ =
∥

∥Pu− Pl
∥

∥ ≤ ε
∥

∥u− l
∥

∥,
∥

∥u− l
∥

∥ ≤ ε
∥

∥u− l
∥

∥ ⇒ (1− ε)
∥

∥u− l
∥

∥ ≤ 0.

(23)

∂α

∂tα
u(x, t) =

∂2

∂x2
u(x, t)+ 2u(x, t)− 3u2(x, t), 0 < α ≤ 1,

with initial conditions

The exact solution of this problem is 
u(x, t) =

− 2
3
�e2t

− 2
3
+�−�e2t

.for the special case α = 1 . For sim-

plicity, we drop (x, t) from u(x, t) and ∂
2

∂x2
u(x, t).

Step 1: Applying YT on both sides of (23) and using the 
differentiation property, we have

In our case 0 < α ≤ 1 , (24) is reduced to

Using the given initial condition, we obtain

Step 2: Applying the inverse YT on both sides of (25), 
we obtain.

This implies that.

Step 3: ADM defines the solution by an infinite series 
of linear terms as

and the nonlinear term as

where An(u) are the Adomian polynomials to be 
determined.

Step 4: substituting (28) and (27) into (26) by using 
the linearity property of the YT, to obtain

u(x, 0) = �.

(24)

T (x, v)

vα
−

m−1
∑

k=0

vk−α+1u(k)(x, 0) = Y

[

∂2

∂x2
u+ 2u− 3u2

]

.

1

vα
T (x, v)− vα−1u(x, 0) = Y

[

∂2

∂x2
u+ 2u− 3u2

]

.

(25)T (x, v) = �v + vαY

[

∂2

∂x2
u+ 2u− 3u2

]

.

u(x, t) = �Y−1
[v]+ Y−1

[

vαY

[

∂2

∂x2
u+ 2u− 3u2

]]

.

(26)u(x, t) = �+ Y−1

[

vαY

[

∂2

∂x2
u+ 2u− 3u2

]]

.

(27)u(x, t) =

∞
∑

n=0

un(x, t),

(28)u2 =

∞
∑

n=0

An(u),

(29)
∞
∑

n=0

un(x, t) = �+ Y−1

[

vαY

[

∞
∑

n=0

∂2

∂x2
un + 2

∞
∑

n=0

un − 3

∞
∑

n=0

An(u)

]]

.



Page 8 of 20Bekela and Deresse  BMC Research Notes          (2024) 17:226 

Step 5: Equating the terms on both sides of (29), we 
have the following recurrence relation.

u0(x, t) = �,
(30)

un+1(x, t) = Y−1

[

vαY

[

∂2

∂x2
un(x, t)+ 2un(x, t)− 3An(u)

]]

, n ≥ 0.

Fig. 1 Solution plots of YTADM to Example 4.1 with α = 0.4, 0.6, 0.8, 1 a line plots, b surface plots

Fig. 2 Solution plots of YTADM for Example 4.1 a surface of the exact solution, b surface of the approximate solution, and c surface of the absolute 
error, d comparison at x = 1 , e absolute error at x = 1
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By using (9), the few components of the Adomian 
polynomials for the nonlinear term u2 have been 
derived in the form

Consequently, solving the above equations, the first 
few components of the YTADM solution for (30) are 
derived as follows:

Using the same technique,

A0(u) = u20, A1(u) = 2u0u1, A2(u) = 2u0u2 + u21,

A3(u) = 2u0u3 + 2u1u2,A4(u) = 2u0u4 + 2u1u3 + u22, and so on.

u0(x, t) = �,

u1(x, t) = Y−1

[

vαY

[

∂2

∂x2
u0 + 2u0 − 3A0(u)

]]

,

= Y−1
[

vαY
[

2�− 3�
2
]]

= Y−1
[

2�vα+1 − 3�
2v

α+1
]

=
2�tα

Ŵ(α + 1)
−

3�2t
α

Ŵ(α + 1)
.

u2(x, t) =
t2α

Ŵ(2α + 1)

(

4�− 18�2 + 18�3
)

.  and so on.
Step 6: The numerical solution of YTADM is given as

u3(x, t) =
8�t3α

Ŵ(3α + 1)

(

8�− 60�
2 + 144�

3 − 108�
4

−
12�2Ŵ(2α + 1)

(Ŵ(α + 1))2
+

36�3Ŵ(2α + 1)

(Ŵ(α + 1))2

−
27�4Ŵ(2α + 1)

(Ŵ(α + 1))2

)

.

u4(x, t) =
t4α

Ŵ(4α + 1)

(

16�− 168�
2 + 648�

3

−1080�
4 + 648�

5 −
24�2Ŵ(2α + 1)

(Ŵ(α + 1))2

+
144�3Ŵ(2α + 1)

(Ŵ(α + 1))2
−

270�4Ŵ(2α + 1)

(Ŵ(α + 1))2

+
144�3Ŵ(2α + 1)

(Ŵ(α + 1))2
−

270�4Ŵ(2α + 1)

(Ŵ(α + 1))2

+
162�5Ŵ(2α + 1)

(Ŵ(α + 1))2
−

48�2Ŵ(3α + 1)

Ŵ(α + 1)Ŵ(2α + 1)

+
288�3Ŵ(3α + 1)

Ŵ(α + 1)Ŵ(2α + 1)
−

540�4Ŵ(3α + 1)

Ŵ(α + 1)Ŵ(2α + 1)

+
324�5Ŵ(3α + 1)

Ŵ(α + 1)Ŵ(2α + 1)

)

,

Table 1 Approximate (Approx.) and comparison solutions of YTADM with the exact solution for Example 4.1 at � = 0.01

t Exact solution Approx. at α = 0.9 Approx. at α = 1 Absolute error at α = 1

YTADM LTDM [64] q-HSATM [61] 
and ATHPM 
[65]

0.001 0.01001 0.01004 0.01001 9.0021× 10−12 7.56× 10−7 1× 10−12

0.002 0.01003 0.01007 0.01003 3.6058× 10−11 1.51× 10−6 9× 10−11

0.003 0.01005 0.01011 0.01005 8.1340× 10−11 2.26× 10−6 3.2× 10−10

0.004 0.01007 0.01014 0.01007 1.4514× 10−10 3.02× 10−6 7.7× 10−10

0.005 0.01009 0.01017 0.01009 2.2788× 10−10 3.78× 10−6 1.5× 10−9

0.006 0.01011 0.01020 0.01011 3.3012× 10−10 4.53× 10−6 2.6× 10−9

0.007 0.01013 0.01023 0.01013 4.5253× 10−10 5.20× 10−6 4.1× 10−9

0.008 0.01015 0.01026 0.01015 5.9590× 10−10 6.00× 10−6 6.1× 10−9

0.009 0.01017 0.01030 0.01017 7.6118× 10−10 6.80× 10−6 8.7× 10−9

0.01 0.01019 0.01033 0.01019 9.4942× 10−10 7.05× 10−6 1.2× 10−8
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To verify the solution approximated by the YTADM 
graphically, we depict the results in Fig. 1 for different 
values of the fractional order ( α = 0.4, 0.6, 0.8,1 ) and in 
Fig. 2 for α = 1.

As shown in Figs. 1a and b, the approximate solutions 
of the pattern behavior gradually decrease as the frac-
tional order values get closer and closer to. The same 
as in the first example, for comparison purposes, we 
consider only the special case because the exact solu-
tion exists. For this reason, in Fig.  2, we compare the 
approximate solution with the exact solution.

As seen from Fig.  2, the approximate solution 
obtained is similar to the exact solution. This find-
ing implies that the results obtained by YTADM are 
in good agreement with the exact results. The numeri-
cal solution to this problem is also compared with the 
results of the Laplace transform decomposition method 
(LTDM) [64], the Aboodh transform homotopy per-
turbation method (ATHPM) [65], and the q-homotopy 
Shehu analysis transform method (q-HSATM) [61] in 
Table  1 at the same number of iterations and domain 
discretization.

Table  1 shows the numerical approximate and com-
parison solutions of YTADM and other numerical 
methods. The absolute errors of YTADM at various 
points in the corresponding domain are presented and 
compared with LTDM [64], q-HSATM [61], ATHPM 
[65], and the exact solution at α = 1 , it yields far more 

(31)

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ . . . ,

= �+
tα

Ŵ(α + 1)

(

2�− 3�
2
)

+
t2α

Ŵ(2α + 1)

(

4�− 18�
2 + 18�

3
)

+
t3α

Ŵ(3α + 1)

(

8�− 60�
2 + 144�

3 − 108�
4
)

+ · · · .

robust results than all the other numerical methods. 
Hence, we conclude that the absolute error determined 
in the table shows that the method is too accurate for 
treating NTFPDEs.

Example 4.2 [63] Consider the nonlinear fractional 
Cauchy reaction–diffusion equation.

with initial condition

The exact solution of this problem is u(x, t) = ex+t for 
the special case α = 1 . For simplicity we drop (x, t) from 
each term of (32). To solve this problem by YTADM, we 
follow the procedure stated in Sect. "A hybrid numerical 
method for solving NTFPDEs".

Step 1: Apply YT on both sides of (32) to obtain

In our case 0 < α ≤ 1 , (33) is reduced to

Step 2: Taking the inverse YT on both sides of (34),

(32)

0
CDα

t u(x, t) =uxx(x, t)− ux(x, t)+ u(x, t)ux(x, t)

− u2(x, t)+ u(x, t), 0 < α ≤ 1

u(x, 0) = ex.

(33)

T (x, v)

vα
−

m−1
∑

k=0

vk−α+1u(k)(x, 0) = Y
[

uxx − ux + uux − u2 + u
]

.

T (x, v)

vα
= v1−αu(x, 0)+ Y

[

uxx − ux + uux − u2 + u
]

,

(34)
T (x, v) = vex + vαY

[

uxx − ux + uux − u2 + u
]

.

(35)
u(x, t) = ex + Y−1

[

vαY
[

uxx − ux + uux − u2 + u
]]

.

Fig. 3 Solution plots of YTADM for Example 4.2 with α = 0.4, 0.6, 0.8, 1 ; a line plots at x = 1 for 0 ≤ t ≤ 1 , b surface plots for 0 ≤ x , t ≤ 1
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Step 3: The ADM defines the solution by an infinite 
series of linear terms as

and the nonlinear term as

(36)u(x, t) =

∞
∑

n=0

un(x, t),

(37)u(x, t)ux(x, t) =

∞
∑

n=0

An(u),

where An and Bn are the Adomian polynomials to be 
determined.

Step 4: Substituting (36), (37) and (38) into (35) by 
using the linearity property of the YT, to obtain

(38)u2(x, t) =

∞
∑

n=0

Bn(u),

Fig. 4 Solution plots of YTADM for Example 4.2 a surface of the exact solution, b surface of the approximate solution, and c surface of the absolute 
error, d comparison at x = 1 , e absolute error at x = 1

Table 2 Approximate (Approx.) and comparison solutions of YTADM, AVIM [63] and the exact solution for Example 4.2 when x = 1

t Exact solution Approx. at α = 0.8 Approx. at α = 0.9 Approx. at α = 1 Absolute error at α = 1

YTADM AVIM [63]

0.01 2.745601 2.792806 2.763486 2.745601 8.8817×10−16 2.2690×10−12

0.03 2.801065 2.901994 2.841677 2.801065 1.1990×10−14 5.5322×10−10

0.05 2.857651 3.000419 2.916542 2.857651 4.2410×10−13 7.1383×10−9

0.07 2.915379 3.094620 2.990430 2.915379 4.4813×10−12 3.8520×10−8

0.09 2.974274 3.186785 3.064180 2.974274 2.6088×10−11 1.3579×10−7
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Step 5: To obtain the component solutions, we equat-
ing the terms on both sides of (39) to get

By using (9), the few components of the Adomian poly-
nomials for the nonlinear terms uuxx and u2 have been 
derived in the form

A3(u) = u0u3x + u1u2x + u2u1x + u3u0x, and so on.
B0(u) = u20, B1(u) = 2u0u1, B2(u) = 2u0u2 + u21, 

B3(u) = 2u0u3 + 2u1u2, and so on.
Since u0(x, t) = ex , the first iteration solution is given 

by

Using the same technique, we obtain.
u2(x, t) =

ext2α

Ŵ(2α+1)
 , u3(x, t) = ext3α

Ŵ(3α+1)
 , u4(x, t) = ext4α

Ŵ(4α+1)
 

and so on.
Step 6: Following component approximate solution, we 

obtain the general solution as

where Eα(.) is well-known as the Mittag–Leffler function 
defined in [7].

To show the solution behavior of the approximate solu-
tion obtained by YTADM, we consider different values of 
the fractional order α (α = 0.4, 0.6, 0.8, 1) and depict the 
results in Figs. 3 and 4.

The numerical solutions obtained by YTADM for 
distinct fractional orders are depicted in Figs.  3a and 

(39)

∞
∑

n=0

un(x, t) = ex + Y−1

[

vαY

[

∞
∑

n=0

unxx

]]

− Y−1

[

vαY

[

∞
∑

n=0

unx

]]

+ Y−1

[

vαY

[

∞
∑

n=0

un

]]

+Y−1

[

vαY

[

∞
∑

n=0

An(u)

]]

− Y−1

[

vαY

[

∞
∑

n=0

Bn(u)

]]

u0(x, t) = ex ,un+1(x, t) = Y−1
[vαY [unxx]]− Y−1

[vαY [unx]]+ Y−1
[vαY [un]]

+ Y−1
[vαY [An(u)]]− Y−1

[vαY [Bn(u)]], n ≥ 0.

A0(u) = u0u0x, A1(u) = u0u1x + u1u0x, A2(u) = u0u2x + u1u1x + u2u0x,

u1(x, t) =Y−1
[vαY [u0xx]]− Y−1

[vαY [u0x]]+ Y−1
[vαY [u0]]

+ Y (−1)[vαY [A0(u)]] − Y (−1)[vαY [B0(u)]],

=Y (−1)[vαY [ex]] = Y (−1)[vα(vex)] = exY−1
[

vα+1
]

=
extα

Ŵ(α + 1)

(40)

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ · · · ,

= ex
(

1+
tα

Ŵ(α + 1)
+

t2α

Ŵ(2α + 1)

+
t3α

Ŵ(3α + 1)
+

t4α

Ŵ(4α + 1)
+ . . .

)

= exEα
(

tα
)

,

b. We have observed from this figure that the solution 
behaviors of the time-fractional derivatives are clearly 
decreasing as the values of fractional order increase. In 
the case of ordinary derivatives, the solution behavior 
of such a DE is not clearly shown. Therefore, arbitrari-
ness in fractional-order derivatives introduces more 
degrees of freedom in the design and study of real-
time events. It is observed from Figs. 4b and d that the 

approximate solution obtained by YTADM is almost 
identical to the exact solution at. From Fig. 4, it is found 
that exact and approximate solutions are in complete 
agreement. The absolute errors illustrated in Figs.  4c 
and e indicate that the designed numerical method is 
a suitable one for solving nonlinear fractional Cauchy 
reaction–diffusion equations that arise in various fields 
of science. We have also compared YTADM with the 
Aboodh variational iteration method (AVIM) [63] 
using their absolute errors. For this reason, we consider 
the time discretization points as in AVIM and record 
the obtained results in Table 2.

Table 2 shows the numerical solution of Example 4.2 
for different points in the domain with different values 
of fractional order. For the special case of fractional 
order α = 1 , we compared the numerical solution 
obtained by YTADM with the solution in the [63] and 
the exact solution. The obtained result indicates that 
the solution obtained by YTADM has a better agree-
ment with the exact solution than the approximate 
solution obtained by AVIM. One of the drawbacks of 
an AVIM in [63] is that the author only considered the 
first four iterations. It is well known that to get accu-
rate solution considering more number of iterations 
is advisable. For this example, we considered the first 
six terms of the solution components and we obtained 
a more accurate solution than the one found in [63] as 
shown in Table 2.

Example 4.3 [50] Consider the following nonlinear 
time-fractional Fornberg-Whitham equation:
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with initial conditions

(41)

C
0 D

α
t u(x, t)

= uxxt(x, t)− ux(x, t)

+ u(x, t)uxxx(x, t)

− u(x, t)ux(x, t)

+ 3ux(x, t)uxx(x, t),

0 < α ≤ 1,

u(x, 0) = e
x
2 .

The exact solution of this problem is u(x, t) = e
x
2
− 2t

3  for 
the special case α = 1.

Step 1: Applying YT on both sides of (41) and using the 
differentiation property, we have.

(42)
T (x, v)

vα
−

m−1
∑

k=0

vk−α+1u(k)(x, 0)

= Y [uxxt − ux + uuxxx − uux + 3uxuxx].

Fig. 5 Solution plots of YTADM for Example 4.3 with α = 0.75, 0.85, 0.95, 1 a line plots, b surface plots

Fig. 6 Solution plots of YTADM for Example 4.3 a surface of the exact solution, b surface of the approximate solution, and c surface of the absolute 
error, d comparison at x = 1 , e absolute error at x = 1
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In our case 0 < α ≤ 1, (42) is reduced to

Step 2: Applying the inverse YT on both sides of (43), 
we obtain.

Step 3: ADM defines the solution by an infinite series 
of linear terms as

(43)

T (x, v)

vα
= vu(x, 0)+ Y [uxxt − ux + uuxxx − uux + 3uxuxx].

(44)
u(x, t) = e

x
2 + Y−1

[vαY [uxxt − ux + uuxxx − uux + 3uxuxx]].

(45)u(x, t) =

∞
∑

n=0

un(x, t),

and the nonlinear term as

where An,Bn and Cn are the Adomian polynomials to be 
determined.

Step 4: Using the linearity property of the YT and sub-
stituting (45)-(48) into (44), we obtain

(46)u(x, t)uxxx(x, t) =

∞
∑

n=0

An(u),

(47)u(x, t)ux(x, t) =

∞
∑

n=0

Bn(u),

(48)ux(x, t)uxx(x, t) =

∞
∑

n=0

Cn(u),

(49)

∞
∑

n=0

un(x, t) = e
x
2 + Y−1

[

vαY

[

∞
∑

n=0

unxxt

]]

− Y−1

[

vαY

[

∞
∑

n=0

unx

]]

+ Y−1

[

vαY

[

∞
∑

n=0

An(u)

]]

−Y−1

[

vαY

[

∞
∑

n=0

Bn(u)

]]

+ 3Y−1

[

vαY

[

∞
∑

n=0

Cn(u)

]]

Table 3 Approximate and comparison solutions of YTADM, and the exact solution for Example 4.3 when t = 0.01

x Exact solution Approx. at α = 0.8 Approx. at α = 0.9 Approx. at α = 1 Absolute error at α = 1

YTADM RPSM [50]

−4 0.134436 0.131160 0.133516 0.134439 3.3733×10−6 2.9899×10−4

−3 0.221647 0.216247 0.220130 0.221653 5.5617×10−6 4.9296×10−4

−2 0.365435 0.356532 0.362934 0.365444 9.1697× 10−6 8.1275×10−4

−1 0.602500 0.587822 0.598378 0.602515 1.5118×10−5 1.3400×10−3

0 0.993355 0.969155 0.986558 0.993380 2.4926×10−5 2.2092×10−3

1 1.637766 1.597867 1.626560 1.637807 4.1096×10−5 3.6425×10−3

2 2.700220 2.634438 2.681744 2.700287 6.7756×10−5 6.0054×10−3

3 4.451910 4.343455 4.421448 4.452022 1.1171×10−4 9.9038×10−3

4 7.339959 7.161147 7.289736 7.340143 1.8418×10−4 1.6324×10−2
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Step 5: Equating the terms on both sides of (49), we 
have the following relation

By using (9), the few components of the Adomian pol-
ynomials for the nonlinear terms uuxxx,uux and uxuxx 
have been derived in the form

u0(x, t) = e
x
2 ,un+1(x, t)

= Y−1
[vαY [unxxt ]]

− Y−1
[vαY [unx]]

+ Y−1
[vαY [An(u)]]

− Y−1
[vαY [Bn(u)]]

+ 3Y−1
[vαY [Cn(u)]], n ≥ 0.

A0(u) = u0u0xxx, A1(u) = u0u1xxx + u1u0xxx,

A3(u) = u0u3xxx + u1u2xxx + u2u1xxx + u3u0xxx, and so 
on.

B3(u) = u0u3x + u1u2x + u2u1x + u3u0x, and so on.

C3(u) = u0xu3xx + u1xu2xx + u2xu1xx + u3xu0xx, and so 
on.

Then the iteration solution of YTADM is obtained as 
follows

A2(u) = u0u2xxx + u1u1xxx + u2u0xxx,

B0(u) = u0u0x,

B1(u) = u0u1x + u1u0x,

B2(u) = u0u2x + u1u1x + u2u0x,

C0(u) = u0xu0xx, C1(u)

= u0xu1xx + u1xu0xx, C2(u)

= u0xu2xx + u1xu1xx + u2xu0xx,

u0(x, t) = e
x
2 ,

u1(x, t) =Y−1
[vαY [u0xxt ]]− Y−1

[vαY [u0x]]+ Y−1
[vαY [A0(u)]]− Y−1

[vαY [B0(u)]]+ 3Y−1
[vαY [C0(u)]],

=− Y−1

[

vαY

[

1

2
e
x
2

]]

+ Y−1

[

vαY

[

1

8
ex
]]

− Y−1

[

vαY

[

1

2
ex
]]

+ 3Y−1

[

vαY

[

1

8
ex
]]

,= −Y−1

[

vαY

[

1

2
e
x
2

]]

=− Y−1
[

vα
( v

2
e
x
2

)]

= −Y−1

[

vα+1

2
e
x
2

]

= −
1

2
e
x
2

tα

Ŵ(α + 1)

Fig. 7 Solution plots of YTADM for Example 4.4 with α = 0.75, 0.85, 0.95, 1, n = 4 ; a line plots, b surface plots
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Table 4 Approximate and comparison solutions of YTADM with the exact solution for Example 4.4

t x Exact solution Approx. at α = 0.9 Approx. at α = 1 Absolute error α = 1

YTADM HPTM and ADM VIM

0.2 0.25 0.076337 0.084786 0.076333 4.3390×10−6 3.3×10−5 3.7×10−5

0.5 0.305350 0.339146 0.305333 1.7356×10−5 3.2×10−5 5.0×10−5

0.75 0.687039 0.763079 0.687000 3.9051×10−5 3.0× 10−6 3.8×10−5

1.0 1.221402 1.356586 1.221333 6.9424×10−5 1.7×10−4 0.00

0.4 0.25 0.093239 0.107156 0.093166 7.2376×10−5 1.17×10−4 5.00×10−5

0.5 0.372956 0.428627 0.372666 2.8950×10−4 2.67×10−4 4.00×10−4

0.75 0.839151 0.964411 0.838500 6.5139×10−4 7.5×10−4 7.50×10−4

1.0 1.491824 1.714509 1.490666 1.1580×10−3 1.27×10−3 1.40×10−3

0.6 0.25 0.113882 0.81217358 0.113500 3.8242×10−4 5.94×10−4 7.93×10−4

0.5 0.455529 1.08280575 0.454000 1.5297×10−3 2.33×10−3 3.00×10−3

0.75 1.024941 1.4140733 1.021500 3.4418×10−3 5.30×10−3 6.70×10−3

1.0 1.822118 1.8211000 1.816000 6.1188×10−3 9.53×10−3 1.18×10−2

Fig. 8 Solution plots of YTADM for Example 4.4 a) surface of the exact solution, b) surface of the approximate solution, and c) surface 
of the absolute error, d) exact vs approximate at x = 1 , and e) the corresponding absolute error at x = 1
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In a similar manner, we obtain.

u4(x, t) =
1
16
e

x
2

t4α

Ŵ(4α+1)
− 3

32
e

x
2

t4α−1

Ŵ(4α)
+ 3

64
e

x
2

t4α−2

Ŵ(4α−1)
− 1

128
e

x
2

t4α−3

Ŵ(4α−2)
, and 

so on.
Step 6: The numerical solution of YTADM is given as

Here we also investigated the behavior of the approxi-
mated solution by up to three iterations of YTADM given 
in (50) by varying the values of the time-fractional order 
( α = 0.75, 0.85, 0.95, 1 ), and the results are presented in 
Fig. 5, and the comparison in Fig. 6 at α = 1

Figure 6 shows the comparison of the numerical solu-
tion obtained by YTADM and the exact solution in the 
3D and 2D plots of Example 4.3. The 3D and 2D plots 
have confirmed the closed contact between the YTADM 
and the exact solutions of Example 4.3.

In Table  3 we compared the obtained results of 
YTADM with the results of the residual power series 
method (RPSM) found in [50]. The results show that, 
with error extremely close to zero, our technique pro-
vides a superior answer than the numerical method in 
[50].

Example 4.4 [62] Consider the following nonlinear 
time-fractional Fokker–Planck equation:

u2(x, t) = −
1

8
e
x
2
t2α−1

Ŵ(2α)
+

1

4
e
x
2

t2α

Ŵ(2α + 1)
.

u3(x, t) = −
1

32
e
x
2

t3α−2

Ŵ(3α − 1)
+

1

8
e
x
2
t3α−1

Ŵ(3α)
−

1

8
e
x
2

t3α

Ŵ(3α + 1)
,

(50)

u(x, t) =u0(x, t)+ u1(x, t)+ u2(x, t)+ . . . ,

=e
x
2 −

1

2
e
x
2

tα

Ŵ(α + 1)
−

1

8
e
x
2
t2α−1

Ŵ(2α)

+
1

4
e
x
2

t2α

Ŵ(2α + 1)
−

1

32
e
x
2

t3α−2

Ŵ(3α − 1)

+
1

8
e
x
2
t3α−1

Ŵ(3α)
−

1

8
e
x
2

t3α

Ŵ(3α + 1)
+ . . .

with initial conditions

The exact solution of this problem is u(x, t) = x2et for 
the special case α = 1.

Step 1: Applying YT on both sides of (51), we obtain.

In our case,0 < α ≤ 1 , then, (52) is reduced to.

Step 2: Applying the inverse YT on both sides of (53), 
to get.

Step 3: The ADM defines the solution by an infinite 
series of linear terms as

and the nonlinear terms as

where An is the Adomian polynomial to be determined.
Step 4: Substituting (55) and (56) into (54), we obtain.

(51)

C
0 D

α
t u(x, t) = −

∂

(

4(u(x,t))2

x −
xu(x,t)

3

)

∂x
+

∂2(u(x, t))2

∂x2
, 0 < α ≤ 1,

u(x, 0) = x2.

(52)

T (x, v)

vα
−

m−1
�

k=0

vk−α+1u(k)(x, 0)

= Y



−
∂

�

4(u(x,t))2

x −
xu(x,t)

3

�

∂x
+

∂2(u(x, t))2

∂x2



.

(53)

T (x, v)

vα
= vu(x, 0)+ Y



−
∂

�

4(u(x,t))2

x −
xu(x,t)

3

�

∂x
+

∂2(u(x, t))2

∂x2



.

(54)

u(x, t) = x2 + Y−1



vαY



−
∂

�

4(u(x,t))2

x −
xu(x,t)

3

�

∂x
+

∂2(u(x, t))2

∂x2







.

(55)u(x, t) =

∞
∑

n=0

un(x, t),

(56)(u(x, t))2 =

∞
∑

n=0

An(u),

(57)
∞
�

n=0

un(x, t) = x2 + Y−1



vαY



−
∂

�

4
x

�∞
n=0 An(u)−

x
3

�∞
n=0 un

�

∂x
+

∂2

∂x2

∞
�

n=0

An(u)







.
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Step 5: Equating the terms on both sides of (57), we have 
the following relation.

By using (9), the few components of the Adomian poly-
nomials for the nonlinear term u2 have been derived as

Then, the iteration solution of YTADM is obtained as 
follows

In a similar manner, we obtain.

u3(x, t) = x2 t3α

Ŵ(3α+1)
, And so on.

Step 6: The numerical solution of YTADM is given as

Here, we investigate the behavior graphical representa-
tions of the approximated solution of YTADM in Fig. 7, 
8. The approximate solution presented in Fig. 7a and b for 
various values of fractional order α(α = 0.75, 0.85, 0.95, 1) 
is decreases as the fractional order α increases. From 
the comparison in Fig. 8, we conclude that the obtained 
results of YTADM have a nice relationship with the exact 

u0(x, t) = x2,

un+1(x, t) = Y−1



vαY





∂

�

4
x

�∞
n=0 An(u)−

x
3

�∞
n=0 un

�

∂x
+

∂2

∂x2

∞
�

n=0

An(u)







, n ≥ 0.

A0(u) = u20, A1(u) = 2u0u1, A2(u) = 2u0u2 + u21,

A3(u) = 2u0u3 + 2u1u2,A4(u) = 2u0u4 + 2u1u3 + u2
2, and so on.

u0(x, t) = x2,

u1(x, t) =Y−1



vαY



−
∂

�

4

xA0(u)−
x
3
u0

�

∂x
+

∂2

∂x2
A0(u)







,

=Y−1



vαY



−
∂

�

4x3 − x3

3

�

∂x
+

∂2

∂x2

�

x4
�







 = Y−1



vαY





∂

�

11
3
x3
�

∂x
+ 12x2







,

=Y−1
�

vαY
�

x2
��

= Y−1
�

vα
�

vx2
��

= Y−1
�

x2vα+1
�

= x2
tα

Ŵ(α + 1)
.

u2(x, t) = x2
t2α

Ŵ(2α + 1)
.

(58)

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ · · · ,

= x2
(

1+
tα

Ŵ(α + 1)
+

t2α

Ŵ(2α)
+

t3α

Ŵ(3α + 1)
+ . . .

)

solution. We have also compared the obtained results of 
YTADM with the results taken in [66] and the exact solu-
tion in Table 4. 

Table 4 shows the exact solution, the approximate solu-
tion of YTADM for fractional order α = 0.9 and 1 , and 
a comparison of the exact solution and the approximate 
solution obtained by HPTM, ADM, and VIM found in the 
reference [66] for α = 1 . The approximate solution found 
by YTADM is generally in considerably better agreement 
with the exact result than the numerical approach, in [66] 
as can be seen from the Table 4. Additionally, it is evident 
from the table that we get more accurate result as α → 1 , 
which indicates that the other approximate solutions are 
likely to be valid.

Conclusion
In this manuscript, we investigate the numerical solution 
of NTFPDEs using YTADM. The procedure is under-
standable to the readers because it consists of the direct 
implementation of the YT on the portion containing 
the fractional derivative of the given problem to change 
it into the algebraic form. Finally, the ADM is applied to 
decompose the nonlinear portion and provides a series 
solution to the given problem. We offered the recom-
mended method’s stability and convergence criteria along 
with its proof. The theoretical explanation of the sug-
gested strategy was supported by the presentation of four 
illustrative instances. The findings presented in terms of 
figures confirm that the results obtained by the present 
method are in good agreement with the exact solutions 
for especial case α = 1 and the proposed approach gives 
better solution with error much near to zero. It is noted 
that the behavior of the approximate solution values at 
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various α ’s is identical to that of the values obtained with 
the exact solution, where α = 1 . This demonstrates that 
the approximate solution is efficient. Tables 1, 2, 3 and 4 
illustrate the findings, which indicate that the suggested 
YTADM approach outperforms the numerical methods 
that have been examined and published in the literature. 
Consequently, we draw the conclusion that YTADM is 
highly effective and potent in locating numerical solu-
tions for a broad range of NTFPDEs. Only time fractional 
non-linear PDEs in one-dimensional spaces were used 
in the current work. This may be extended to the space–
time fractional PDEs with multi-dimensional spaces as 
well as the space fractional PDEs. Furthermore, for the 
purpose of addressing non-linear real-world problems, 
the fractional order derivative is taken in the Caputo 
meanings. This may also be extended to other fractional 
derivatives such as Caputo-Fabrizio, conformable, and 
Atangana-Baleanu (ABC) fractional derivative orders.
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