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Introduction
Next-generation sequencing (NGS) has revolutionized 
infectious disease research and public health, enabling 
faster pathogen discovery, surveillance, and response [1–
4] at a lower cost and higher throughput than traditional 
Sanger sequencing [5]. NGS sample preparation involves 
attaching adapters and unique barcodes to the target 
genomic DNA or cDNA. These sequences are vital on 
the Illumina NGS platform for flow cell binding, cluster 
generation, and demultiplexing of target genome reads 
[6, 7]. When target DNA fragments are shorter than the 
sequencing run cycle, sequencing may extend into the 
adapters, resulting in adapter-contaminated reads [8]. 
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Abstract
Trimming adapters and low-quality bases from next-generation sequencing (NGS) data is crucial for optimal 
analysis. We evaluated six trimming programs, implementing five different algorithms, for their effectiveness in 
trimming adapters and improving quality, contig assembly, and single-nucleotide polymorphism (SNP) quality and 
concordance for poliovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and norovirus paired 
data sequenced on Illumina iSeq and MiSeq platforms. Trimmomatic and BBDuk effectively removed adapters 
from all datasets, unlike FastP, AdapterRemoval, SeqPurge, and Skewer. All trimmers improved read quality (Q ≥ 30, 
87.8 − 96.1%) compared to raw reads (83.6 − 93.2%). Trimmers implementing traditional sequence-matching 
(Trimmomatic and AdapterRemoval) and overlapping algorithm (FastP) retained the highest-quality reads. While all 
trimmers improved the maximum contig length and genome coverage for iSeq and MiSeq viral assemblies, BBDuk-
trimmed reads assembled the shortest contigs. SNP concordance was consistently high (> 97.7 − 100%) across 
trimmers. However, BBDuk-trimmed reads had the lowest quality SNPs. Overall, the two adapter trimmers that 
utilized the traditional sequence-matching algorithm performed consistently across the viral datasets analyzed. Our 
findings guide software selection and inform future versatile trimmer development for viral genome analysis.
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Effective adapter trimming is essential for accurate refer-
ence mapping, de novo assembly, and SNP calling.

This study used poliovirus, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), and norovirus 
paired reads sequenced on Illumina iSeq and MiSeq plat-
forms [8] to evaluate the performance of six adapter and 
quality trimming tools, implementing five algorithms: (i) 
sequence-matching using global alignment with no gaps, 
(ii) sequence overlapping with mismatches, (iii) proba-
bilistic overlapping, (iv) k-mer based sequence match-
ing, and (v) bit-masked k-difference algorithm with 
mismatches, gaps, and indels (Supplementary Material 
Sect. 1.1).

Methods
Published adapter trimming software programs were 
selected based on their unique algorithms, sensitivity, 
specificity, positive and negative predictive values, and 
speed. These trimmers included Trimmomatic v0.39 [9] 
and AdapterRemoval v2.2.2 [10] for sequence-matching, 
FastP v0.20.1 [11] for sequence-overlapping, SeqPurge 
v2022_07 [12] for probabilistic overlapping, BBDuk 
v38.90, a tool included in the BBMap package (https://
sourceforge.net/projects/bbmap/) for kmer-based, and 
Skewer v0.2.2 [13] for k-difference matching algorithm 
(Fig. S1). Parameter thresholds for adapter identifica-
tion and quality trimming, as well as allowed mismatches 
for read alignments were standardized across trimmers 
(Supplementary Methods Sect. 2.1 and Table S2). Librar-
ies prepared from random cDNA of 13 poliovirus clinical 
isolates and amplicons generated from eight SARS-CoV-
2-positive nasopharyngeal swabs and seven norovirus-
positive stool samples were sequenced using Illumina 
300-cycle (2 × 150  bp, paired-end) MiSeq v2 Micro and 
iSeq i1 kits following standardized protocols (Supple-
mentary Materials Sect.  2.2). Raw MiSeq and iSeq data 
were demultiplexed onboard the instrument without 
adapter trimming. The sequenced viral reads were then 
processed through the selected trimmers.

Trimmer performance was evaluated by comparing 
read statistics for raw versus trimmed datasets, including 
percent residual adapters, read count, length, and base 
quality (Q ≥ 30). Assembly statistics compared include 
N50, which is the length of the shortest contig spanning 
at least 50% of the complete (reference) genome analyzed, 
maximum contig length (maxContig), “genome coverage” 
calculated as Maximum contig length (bps)/Viral refer-
ence genome Length (bps)×100, adapted from Illumina 
[14], and single nucleotide polymorphism (SNP) quality 
and SNP concordance.

Sequence read statistics were calculated using SeqKit 
v.0.10.1 [15], and quality was assessed using FastQC 
v0.11.5 [16] and MultiQC v1.9 [17]. Raw and trimmed 
reads per trimmer were separately assembled de novo 

using SPAdes v3.15.3 [18]. SNP calling was performed 
using BCFtools v1.10.2 [19] with appropriate viral-spe-
cific references described in Supplementary Methods 
Sect. 2.3–2.5. Results between trimmers were statistically 
compared using the Wilcoxon signed-rank test with Bon-
ferroni correction and data visualized using ggplot2 in R 
v4.0.2 (https://www.r-project.org/). The average runtime 
and memory usage were compared across trimmers for 
the largest poliovirus dataset.

Results
Residual adapters
Compared to MiSeq, iSeq raw reads had signifi-
cantly more adapters for all viral datasets analyzed 
(p ≤ 1.35 × 10− 3) (Fig.  1 and Table S3). After trimming, 
residual adapters were detected in AdapterRemoval, 
FastP, and SeqPurge-trimmed single and Skewer-
trimmed paired reads, with FastP retaining the most 
adapters for poliovirus (0.038 − 12.54%), SARS-
CoV-2 (0.043 − 13.06%), and norovirus trimmed reads 
(0.32 − 3.51%) (Fig.  1). AdapterRemoval left more adapt-
ers in MiSeq than iSeq poliovirus and SARS-CoV-2 
trimmed reads (p < 0.015). SeqPurge only left detectable 
adapters in SARS-CoV-2 single reads.

Differences in raw versus trimmed read statistics
Overall, iSeq and MiSeq raw reads showed similar mean 
total read (paired and single) counts, paired read counts, 
base counts, and read lengths, except MiSeq generated 
more SARS-CoV-2 raw reads and bases (p = 0.035, Table 
S4). The iSeq generated more high-quality raw reads for 
poliovirus and SARS-CoV-2 than MiSeq (p ≤ 1.09 × 10− 3), 
while no differences were observed for noroviruses.

All trimmers output similar counts of total reads, read 
pairs, and bases for poliovirus, SARS-CoV-2, and norovi-
rus (Table S5-S7), except BBDuk, had significantly fewer 
bases for SARS-CoV-2 (p < 0.028, Table S6). BBDuk also 
retained the shortest trimmed viral reads compared to 
other trimmers (p ≤ 3.12 × 10− 5, Fig. 2, Table S5-S7). Seq-
Purge and Skewer consistently output longer trimmed 
reads than Trimmomatic, AdapterRemoval, and FastP 
across viruses and sequencers (Fig. S8-S10, panels D and 
J).

The iSeq poliovirus and SARS-CoV-2 trimmed data-
sets had significantly fewer paired reads compared to 
the raw datasets (p < 0.012, Tables S4 − S6, Fig. S8B and 
S9B), with Trimmomatic, AdapterRemoval, FastP, and 
BBDuk consistently retaining fewer trimmed read pairs 
than raw reads (p < 0.027) for both poliovirus and SARS-
CoV-2. Also, poliovirus and SARS-CoV-2 trimmed 
datasets had significantly fewer bases than raw datasets 
(p < 5.44 × 10− 4). Overall, trimmed reads were shorter but 
with higher quality bases (82.41–96.2% with Q ≥ 30) than 
raw reads (77.74–93.61%) for poliovirus, SARS-CoV-2, 
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and noroviruses (p < 3.75 × 10− 3, Tables S5 − S7, Fig. 
S8 − S10, panels E, F, K and L). Additionally, trimmers 
preserved longer MiSeq poliovirus and SARS-CoV-2 
reads than iSeq (p ≤ 5.59 × 10− 3, Fig.  2, Table S4), and 
higher-quality iSeq than MiSeq reads for all three viruses 
(p ≤ 0.035) (Table S4).

Differences in trimmed read quality
AdapterRemoval, Trimmomatic, and FastP consis-
tently output reads with a higher percentage of qual-
ity bases (Q ≥ 30, 93.15 − 96.7%) than SeqPurge, BBDuk, 
and Skewer (87.73 − 95.72%) (Tables S5-S7 and S11, Fig. 
S8-S10, panels E, F, K and L). Specifically, BBDuk, Seq-
Purge, and Skewer retained significantly fewer quality 
iSeq reads across all viruses (p < 7.9 × 10− 3) and MiSeq 
norovirus reads (p < 0.024) compared to other trimmers. 
Only AdapterRemoval retained significantly more qual-
ity MiSeq SARS-CoV-2 reads than BBDuk and SeqPurge 
(p < 0.016), and no quality differences were observed for 
MiSeq poliovirus reads (p > 0.088).

Overall, trimmers output more high-quality (Q ≥ 30) 
iSeq than MiSeq SARS-CoV-2 and norovirus reads 
(p < 0.035), with no platform-specific differences for 
poliovirus reads (Table S4).

De novo assembly statistics
All trimmers except BBDuk improved N50 and max-
Contig for assemblies across viral datasets compared 
to raw reads. Notably, BBDuk-trimmed poliovirus and 
SARS-CoV-2 read assemblies resulted in the lowest N50 
(p < 0.037, Table S12) and maxContig (p < 7.83 × 10− 3, 
Table S13), achieving only 8 − 39.9% genome coverage 
compared to raw reads (8.8 − 87.5%) and other trim-
mers (54.8 − 98.9%) (Table  1). Trimmed poliovirus reads 
assembled into long contigs, significantly improving 
genome coverage, compared to raw read assemblies, 
from 35.7 to 98.9% for iSeq FastP-trimmed reads and 
from 87.5 to 95.6% for MiSeq AdapterRemoval-trimmed 
reads (Table  1). Assemblies from trimmed norovirus 
reads showed no significant differences.

MiSeq and iSeq showed comparable mean N50 and 
maxContig for SARS-CoV-2 and norovirus trimmed 
reads. However, FastP-trimmed iSeq poliovirus reads 
assembled longer contigs than MiSeq reads (p = 0.014, 
Table S14).

Fig. 1  Differences in percentage residual adapters between iSeq vs. MiSeq poliovirus, severe acute respiratory syndrome coronavirus 2, and norovirus 
reads, grouped by the trimmer. The median is shown as black bars, while the gray bars show the mean and standard error interval. Only statistically signifi-
cant differences are indicated with corresponding p-values. Abbreviations: Polio is for poliovirus, Noro for norovirus, and SC2 for severe acute respiratory 
syndrome coronavirus 2
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Single nucleotide polymorphism (SNP) quality and 
concordance
There were no differences in SNP quality for SARS-
CoV-2 and norovirus datasets across the trimmers. How-
ever, BBDuk-trimmed poliovirus read assemblies had 
lower mean SNP quality than other trimmers (Table S15).

Illumina iSeq and MiSeq read assemblies exhibited 
SNPs with similar quality, ranging from 3 to 228 for all 
viruses (Table S14). SNP concordance across trimmers 
was high (> 97.7–100%) for both iSeq and MiSeq viral 
datasets; however, BBDuk-trimmed read assemblies had 
2 − 8 unique SNPs relative to other trimmers (Fig. S16).

Discussion
We tested six trimming software programs on viral 
sequencing data generated using Illumina iSeq and 
MiSeq platforms. Trimmomatic and BBDuk produced 
the cleanest trimmed reads with the least residual adapt-
ers for poliovirus, SARS-CoV-2, and norovirus datas-
ets. Viral reads trimmed using FastP, AdapterRemoval, 
SeqPurge (SARS-CoV-2 single-reads only), and Skewer 
exhibited varying levels of residual adapters, with FastP-
trimmed reads retaining the highest percentage (0.038–
13.06%) across viral datasets. Our results align with a 
previous study reporting low levels of residual adapters 
in human cancer data trimmed using AdapterRemoval 

(0.4%), Skewer (0.1%), and Trimmomatic (< 1.0 × 10− 5 
percent) [12]. In contrast to our study, high numbers 
of residual adapters were reported in ChIP-seq human 
H3K4me1 data trimmed using BBDuk (37.2%) and 
Trimmomatic (57.7%) [20]. These differences in adapter 
trimming performance likely depend on specimen type, 
adapter contamination levels, and trimmer settings. For 
instance, AdapterRemoval v2.2.2 showed less specificity 
in trimming single reads with multiple or short (< 12 bp) 
adapters [21]. FastP-trimmed data showed increased 
residual adapters when allowed mismatches during read 
alignment exceed four [22], possibly due to overlooking 
multiple or interweaved adapters, as FastP assumes a sin-
gle adapter at read tails [11].

All trimmers retained a similar number of total reads, 
paired reads, and bases for poliovirus, SARS-CoV-2 
(except BBDuk), and norovirus datasets. This aligns 
with a previous analysis of human cancer genes, where 
SeqPurge, AdapterRemoval, Trimmomatic, and Skewer 
retained a similarly high percentage (99.9%) of input read 
pairs [12]. However, analysis of RNA-Seq reads from 
Drosophila simulans gonads and carcasses showed that 
Skewer retained more usable RNA-Seq read pairs (20% 
of input reads) than Trimmomatic (14%) and Adapter-
Removal (13%) [13]. All trimmers significantly improved 
data quality (Q ≥ 30 = 87.73 − 96.07%) compared to raw 

Fig. 2  Mean (average) read lengths of raw and trimmed iSeq (red) and MiSeq (blue) reads for poliovirus (A), severe acute respiratory syndrome corona-
virus 2 (B), and norovirus (C) datasets. Abbreviations: SC2 for severe acute respiratory syndrome coronavirus 2
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reads (83.55 − 93.17%), with AdapterRemoval and Trim-
momatic (traditional sequence-matching algorithm) and 
FastP (overlapping algorithm) producing reads with the 
highest quality. These tools’ better performance could 
stem from their simultaneous comparisons of read-to-
read and adapter-to-read alignments [9–11], effectively 
removing poor-quality bases. The variation in adapter 
trimming outcomes observed across studies is likely due 
to differences in the type of data sequenced (human ver-
sus virus) and trimming parameters used.

For raw reads, the iSeq had more detectable adapt-
ers than MiSeq (p ≤ 0.001), likely due to differences in 
their chemistry, workflow, and flow cell mechanisms, 
which may bias the average insert length [21]. Despite no 
platform-specific differences in the number of trimmed 
reads and bases, trimmers retained longer MiSeq reads 
but higher-quality iSeq reads, possibly because iSeq 
reads required more trimming to remove adapters. Dif-
ferences in assembly metrics were observed between 
sequencing platforms only for poliovirus, where raw 
and FastP-trimmed iSeq read assemblies had higher 
N50 and maxContig values than MiSeq reads. The most 
pronounced differences were observed between trim-
mers, with BBDuk-trimmed read assemblies resulting in 
the lowest N50, maxContig, and genome coverage rela-
tive to other trimmers. Trimming poliovirus reads with 
Trimmomatic improved genome coverage breadth by 
up to 71.8%, aligning with results showing Trimmomatic 
increasing N50 and maxContig values for Escherichia 
coli genomes by 58–77% and 28–55%, respectively [9]. In 
our study, poliovirus assemblies, sequenced from isolates 
(non-targeted), exhibited higher genome coverage (35.7–
98.9%) compared to SARS-CoV-2 (8.7–67.9%) and noro-
viruses (29.3–75.6%), which were amplified from clinical 
samples before sequencing. Poliovirus reads may have 
assembled into longer contigs due to the virus’ ability to 
inhibit host cell RNA synthesis during enterovirus infec-
tion, increasing the viral RNA proportion [22].

Identification of high-quality SNPs is crucial for com-
prehensive genome analysis. Our study found 97.7 − 100% 
concordant SNPs per virus across all six trimmers. Sturm 
et al. also reported high SNP concordance when bench-
marking SeqPurge performance on breast and ovarian 
cancer exon sequences [12]. Notably, BBDuk-trimmed 
read assemblies had 2 − 8 additional unique SNPs, possi-
bly due to low read coverage or false-positive SNP calls 
[12]. Poliovirus assemblies using BBDuk-trimmed reads 
had the lowest SNP quality compared to other trimmers.

When choosing a trimmer, researchers should con-
sider factors like throughput, speed, and memory usage 
[11–13]. All trimmers except SeqPurge took < 50 s to pro-
cess 13 poliovirus datasets. FastP was the fastest, using 
12.75 s, while SeqPurge took 3.9 min. Trimmomatic used 
the most memory (4.4GB). Our findings confirm previous Ta
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studies showing Trimmomatic and AdapterRemoval offer 
the highest throughput [10], FastP provides the fastest 
processing [11], and AdapterRemoval, SeqPurge, and 
Skewer require less memory [12, 13]. However, with 
larger datasets, these differences in performance between 
trimmers may become significant.

Limitations
This study analyzed poliovirus, SARS-CoV-2, and noro-
virus samples prepared using metagenomic or targeted 
genome sequencing strategies. These viruses were chosen 
because they are of significant public health importance 
and were readily available through collaborating labora-
tories. However, the small sample size analyzed may not 
be representative of the complete genomic diversity of 
these virus types/strains and results may differ for more 
complex viruses.

Conclusion
This study found that sequence-matching trimmers, 
Trimmomatic and AdapterRemoval, consistently per-
formed well for viral iSeq and MiSeq data. Overall, cur-
rent trimming tools demonstrate a trade-off between 
speed/memory and accuracy/consistency across viral 
datasets. There is a need for new adapter and quality 
trimming tools that balance speed and accuracy without 
compromising on quality.
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