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Abstract
Background: Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) is a coactivator
with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene
for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How
its many functions are regulated, is however still largely unclear. Therefore a transcription profile
of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by
screening its cDNA for possible splice variants with exon-spanning primers.

Findings: This led to the discovery of 2 new splice variants in the pig, which were subsequently
also detected in human tissues. In these variants, exon 8 was either completely or partly (the last
66 bp were conserved) spliced out, potentially coding for a much shorter protein of respectively
337 and 359 amino acids (aa), of which the first 291 aa would be the same compared to the
complete protein (796 aa).

Conclusion: Considering the functional domains of the PPARGC1A protein, it is very likely these
splice variants considerably affect the function of the protein and alternative splicing could be one
of the mechanisms by which the diverse functions of PPARGC1A are regulated.

Background
Peroxisome proliferator-activated receptor γ coactivator 1α
(PPARGC1A) is a transcriptional coactivator with many
diverse functions and has a pivotal role in fat and energy
metabolism. This cold- and exercise-inducible gene is cru-
cial to adaptive thermogenesis and is an essential regula-
tor of adipogenesis, adipocyte differentiation and
mitochondrial biogenesis/respiration [1-4]. Recently, it
has been shown that it is also involved in angiogenesis
[5]. It exerts its function through a whole range of nuclear
hormone receptors and other transcription factors, and is
primarily expressed in tissues with high energy demands
[6]. Besides having an important influence on the regula-

tion and composition of the body weight, it also is an
important factor in determining muscle fibre type compo-
sition [7-9]. It has been shown that PPARGC1A increases
the amount of oxidative muscle fibres, and that it also is
expressed at a higher level in these muscle fibres.

For several reasons, porcine PPARGC1A is an interesting
candidate gene for meat quality, an economically impor-
tant and complex characteristic which is composed of
many different traits. Associations have been found
between mutations in the coding region of PPARGC1A
and certain fat characteristics in the pig [10-12]. Other
interesting findings are that PPARGC1A is the only candi-
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date gene so far that was located in the QTL region for leaf
fat weight and backfat on chromosome 8p21 [11,13], and
that other candidate genes for meat quality, like GLUT4,
are regulated by PPARGC1A [14].

As explained above, PPARGC1A has many functions
which can strongly differ between tissues. It has been
shown that there is a variation in mRNA expression in the
pig, not only between tissues, but also between different

locations within the longissimus dorsi muscle [15]. Only
very little is known about this multifunctional gene in the
pig and its possible use as a selection marker in the pig
industry. In order to get a better understanding of the reg-
ulation of the many functions of PPARGC1A, exon-span-
ning primers were used to construct a detailed
transcription profile of its presence in 32 different tissues
and several embryonic developmental stages in the pig.
The aim was to identify possible splice variants, because

Table 1: Details on exon-spanning primers used for splice variant detection.

Primer name Primer sequence (5'→3') Location Amplicon length

PGC1A+Ex1,3 CATGTGCAACCAGGACTCTGT Exon 1 294 bp

PGC1A-Ex1,3 TCTTCATCCACAGGGAGACTG Exon 3

PGC1A+Ex2,4 TTCTGGGTGGACTCAAGTGG Exon 2 367 bp

PGC1A-Ex2,4 TTGTGGTTTGCATGGTTCTG Exon 4

PGC1A+Ex3,5 CCCTGTGGATGAAGACGGATT Exon 3 367 bp

PGC1A-Ex3,5 AGGAGGGTCATCATTTGTGGT Exon 5

PGC1A+E4,6 CAGAACCATGCAAACCACAA Exon 4 296 bp

PGC1A-Ex4,6 TCTGGGGTCAGAGGAAGAGAT Exon 6

PGC1A+Ex5,7 CAACAGCAAAAGCCACAAAGA Exon 5 284 bp

PGC1A-Ex5,7 CAGTTCCAGAGAGTTCC Exon 7

PGC1A+Ex6,8 ATCTCTTCCTCTGACCCCAGA Exon 6 266 bp

PGC1A-Ex6,8 TCTTGGTGGAGTTGTTGCC Exon 8

PGC1A+E7,9 TGTGGAACTCTCTGGAACTGC Exon 7 1017 bp

PGC1A-Ex7,9 GAACGTGATCTGGCGCAC Exon 9

PGC1A+E8,10 TTCCGTATCACCACCCAAA Exon 8 298 bp

PGC1A-Ex8,10 TTCCCTCTTCAGCCTCTCG Exon 10

PGC1A+Ex9,11 TACTCTGAGTCAGGCCACTGC Exon 9 302 bp

PGC1A-Ex9,11 TCACCAAAAACTTCAAAACGG Exon 11

PGC1A+Ex10,12 CGAGAGGCTGAAGAGGGAA Exon 10 267 bp

PGC1A-Ex10,12 GCAGCAAAAGCATCACAGG Exon 12

PGC1A+Ex11,13 AGGGACCGTTTTGAAGTTTTT Exon 11 255 bp

PGC1A-Ex11,13 GCTCTTGGTGGAAGCAGGA Exon 13
Page 2 of 7
(page number not for citation purposes)



BMC Research Notes 2008, 1:138 http://www.biomedcentral.com/1756-0500/1/138
they could provide an explanation for the regulation of
the tissue-dependent functions of PPARGC1A.

Methods
Tissue samples were collected from a freshly slaughtered
female, commercial, hybrid pig and immediately sub-
merged in RNA later (Sigma-Aldrich, Bornem, Belgium),
according to the instructions manual. Testis was collected
from a similar male pig. Total RNA was extracted with the
Aurum Total RNA Fatty and Fibrous Tissue Kit (Bio-Rad,
Nazareth, Belgium), according to the manufacturer's pro-
tocol which included an on-column DNase treatment.

Ovaries were collected at a local slaughterhouse from pigs
at slaughter age, and used for in vitro embryo production
as described in Bijttebier et al. [16]. RNA extraction from
embryonic samples (for the 2–4 cell, 8 cell, morula and
blastocyst stage respectively 15, 12, 8 and 6 pooled
embryos were used) was performed with the PicoPure
RNA Isolation Kit (Arcturus, Mountain View, USA),
according to the instructions manual, after which a DNase
treatment was carried out with RQ1 RNase-free DNase
(Promega, Leiden, The Netherlands). Both DNase treat-
ments were verified by a minus reverse transcription (RT)
control PCR and RNA integrity was checked, as described
in Erkens et al. [15]. Also, RNA purity and concentration
were measured with the ND-1000 Spectrophotometer
(NanoDrop, Wilmington, USA). Next, the iScript cDNA
Synthesis Kit (which contains both oligo dT and random
primers; Bio-Rad, Nazareth, Belgium) was used to convert
approximately 1 μg of RNA from each sample to cDNA,
according to the manufacturer's protocol. This RT step was
verified by a control PCR [15], in which a no-template
control was included to check for DNA contamination.
Ready-to-use human cDNA from kidney and liver was
provided by Prof. Vandesompele (Department of Pediat-
rics and Medical Genetics, Ghent University), to verify
whether the detected splice variants also occur in human
tissues.

Porcine sequences [GenBank:AH013726] and [Gen-
Bank:AY346131], found in the NCBI database [17], were
used for the design of exon-spanning primers with
Primer3 [18] (Table 1). This way, possible splice variants
for each of the 13 exons (except the outer ones) could be
detected. During primer design, Mfold [19] and Blast [20]
were used to check for possible secondary structures and
primer specificity, respectively. PCR conditions for each
primer were optimized with FastStart Taq DNA Polymer-
ase (Roche, Vilvoorde, Belgium) and included a no-tem-
plate control. Also, a genomic DNA control was included
to check for possible amplification of pseudogenes. The
annealing temperature used for all primer pairs was 60°C.

The amplicons from all primer pairs, except PGC1A+/-
Ex7,9, were sequenced by direct sequencing. Because the
use of PGC1A+/-Ex7,9 resulted in multiple amplicons, the
GENECLEAN II Kit (Qbiogene, Brussels, Belgium) was
used to first isolate and purify the separate amplicons
from the agarose gel, before sequencing. Sequencing of
the amplicons was conducted on an Applied Biosystems
3730xl DNA Analyser with the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Lennik, Bel-
gium), according to the manufacturer's protocol.

Results and discussion
All exon-spanning primer pairs in all tissues resulted in
one amplicon of the expected length (Table 1), except for

Agarose gel showing the 3 different exon 8 amplicons from primer PGC1A+/-Ex7,9Figure 1
Agarose gel showing the 3 different exon 8 amplicons 
from primer PGC1A+/-Ex7,9. 1: complete amplicon of 
1017 bp; 2: amplicon (167 bp) of splice variant in which last 
66 bp of exon 8 are conserved; 3: amplicon (101 bp) of splice 
variant in which exon 8 is completely spliced out.
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PGC1A+/-Ex7,9. With this last primer pair, 3 different
amplicons were detected and the results were tissue-
dependent (Table 2). The forward and reverse primer of
PGC1A+/-Ex7,9 are located in exon 7 and exon 9, respec-
tively, which means its amplicon completely contains
exon 8. Besides the expected fragment of 1017 bp (which
incorporates all 916 bp of exon 8), 2 new splice variants
of PPARGC1A in the pig were detected. Sequencing
revealed that in these splice variants exon 8 was either
partly (the last 66 bp of exon 8 were conserved) or com-
pletely spliced out, which resulted in amplicons of 167
and 101 bp, respectively (Figure 1, 2). Additional PCRs
with longer amplicons (exon 4–9 and exon 4–12) con-
firmed the existence of both exon 8 splice variants and
indicate that the other exons were preserved in the rest of
the transcript. Taken together with the fact that no pseu-
dogenes for PPARGC1A are described in any species and
the use of a genomic DNA control, this makes it unlikely
that our observations are the result of pseudogenes.

As can be seen from Figure 2, both splice variant bounda-
ries have GC-AG splice sites, instead of following the more
common GT-AG rule. Table 2 shows that one or both
splice variants were found in almost every tissue that was

tested. They could also be detected in the pre-implanta-
tion embryonic stages, which implies PPARGC1A is
involved in early development. An interesting finding
however, is the fact that the complete amplicon (1017 bp)
was not detected in any of the 4 embryonic stages. This
could indicate certain functions of PPARGC1A are
switched off or altered during early development, but
without a functional analysis of the splice variants it is not
possible to discuss the effects on its functionality or to give
an explanation for these findings. In testis, a PCR artefact
(221 bp) was detected with a 92% identity to human
outer dense fibre of sperm tails 2 (ODF2) and was depos-
ited in GenBank as an EST [GenBank:EY122774].

Only very little is known about the existence of splice var-
iants of PPARGC1A in any species, and up until now noth-
ing was known about it in the pig. There have been
previous reports suggesting the existence of splice variants
in which exon 8 was possibly spliced out, in rat skeletal
muscle and brown adipose tissue, but their sequence was
not determined [21,22]. However, this is the first study
giving a detailed description of the actual presence and
sequence of 2 splice variants in a whole range of porcine
tissues.

Nucleotide sequence of the 3 porcine PPARGC1A amplicons from primer PGC1A+/-Ex7,9Figure 2
Nucleotide sequence of the 3 porcine PPARGC1A amplicons from primer PGC1A+/-Ex7,9. CAmpl: nucleotide 
sequence of the complete amplicon (1017 bp); SV2: nucleotide sequence of amplicon from splice variant in which last 66 bp of 
exon 8 are conserved (167 bp); SV3: nucleotide sequence of amplicon in which exon 8 is completely spliced out (101 bp).

       1              exon7  exon8                                                                                                  130 

CAmpl  TGTGGAACTCTCTGGAACTGCAGGCCTAACTCCACCCACCACTCCTCCTCATAAAGCCAACCAAGATAACCCTTTTAGGGCTTCTCCAAAGCTGAAGCCCCCTTGCAAGACTGTGGTACCTCCGCCATCG 

SV2  TGTGGAACTCTCTGGAACTGCAG                                                                                                            

SV3  TGTGGAACTCTCTGGAACTGCAG                                                                                                            

       131                                                                                                                          260 

CAmpl  AAGAAGACCCGGTACAGTGAGTCTTCGGGGACCCACGGCAACAACTCCACCAAGAAAGGGCCCGAGCAGTCCGAGCTGTACGCGCAGCTCAGCAAGACGTCCGCGCTCGGCGGCGGACACGAGGAACGGA 

SV2                                                                                                                                     

SV3                                                                                                                                     

       261                                                                                                                          390 

CAmpl  AGGCCAGGCGGCCCAGTCTGCGGCTATTTGGTGACCATGACTATTGTCAGTCGATTAATTCCAAAGCGGAAATCCTCATCAATATATCGCAGGAGCTCCACGACTCCAGACAACTAGACTCTAAAGATGC 

SV2                                                                                                                                     

SV3                                                                                                                                     

       391                                                                                                                          520 

CAmpl  CGCCTCTGACTGGCAGAGGCAGATGTGTTCTTCCACAGACTCAGACCAGAGCTACCTGACCGAGACGTCGGAGGCGAGCAGGCAGGTCTCTCCGGGCAGCGCCCGAAAACAGCTCCAAGACCAGGAAATC 

SV2                                                                                                                                     

SV3                                                                                                                                     

       521                                                                                                                            650 

CAmpl  CGAGCCGAGCTGAACAAGCACTTCGGTCATCCCAGTCAAGCTGTTTTTGACGACGAAGCAGACAAGACCAGTGAACTGAGGGACAGTGATTTCAGTAACGAACAATTCTCCAAACTACCTATGTTTATAA 

SV2                                                                                                                                     

SV3                                                                                                                                     

       651                                                                                                                            780 

CAmpl  ATTCAGGACTAGCCATGGATGGCCTGTTTGATGACAGCGAAGATGAAAGTGATAAACTGAACTCCCCTTGGGATGGCACGCAGTCCTATTCATTGTTCGATGTGTCGCCTTCTTGTTCTTCTTTTAACTC 

SV2                                                                                                                                     

SV3                                                                                                                                     

       781                                                                                                                            910 

CAmpl  TCCGTGTAGAGATTCCGTATCACCACCCAAATCCTTATTTTCTCAAAGACCCCAAAGGATGCGCTCTCGTTCAAGGTCCTTTTCTCAACACAGGTCGTGTTCTCGATCACCATATTCCAGGTCAAGATCA 

SV2                                                                                               GTCGTGTTCTCGATCACCATATTCCAGGTCAAGATCA 

SV3                                                                                                                                     

       911                    exon8 exon9                                                                    1017 

CAmpl  AGGTCCCCAGGCAGTAGATCCTCTTCAAGATCTTGCTACTACTCTGAGTCAGGCCACTGCAGACACCGCACGCACCGAAATTCTCCCCTGTGCGCCAGATCACGTTC 

SV2  AGGTCCCCAGGCAGTAGATCCTCTTCAAGATCTTGCTACTACTCTGAGTCAGGCCACTGCAGACACCGCACGCACCGAAATTCTCCCCTGTGCGCCAGATCACGTTC 

SV3                               ATCTTGCTACTACTCTGAGTCAGGCCACTGCAGACACCGCACGCACCGAAATTCTCCCCTGTGCGCCAGATCACGTTC 
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The 2 newly identified splice variants possibly give rise to
a much shorter protein of respectively 359 and 337 aa,
depending on whether exon 8 is partly or completely
spliced out (Figure 3). This is much shorter than the com-
plete protein with 796 aa. The first 291 aa of both variants
are identical to the complete protein, but the rest of the aa
sequence is completely different. It can be expected that
this will have an important influence on the function of
the produced protein (Figure 3). In the study by Baar et al.
[22] an increase of a smaller PPARGC1A protein was
detected after exercise in rats. This was consistent with the
increase of the smaller cDNA band they detected,
although it was not established if that protein originated
from the shorter mRNA and if this had any functional sig-
nificance.

The PPARGC1A protein can generally be divided into 3
regions (Figure 3a). The N-terminal region consists of a
transcriptional activation domain which contains an
essential LXXLL motif, and is involved in the activation of
many transcription factors. A less distinct, central region
contains both an inhibitory domain and several interac-
tion domains (PPARγ, NRF-1, MEF2C). At the C-terminal
end, an RNA processing domain is located, which com-
prises 2 serine-arginine-rich domains (SR) and an RNA
recognition motif (RRM) [1,23-25]. Figure 3 shows that in
the putative protein from both splice variants the N-termi-
nal activation domain is conserved. The central region
however is only partly conserved. The aa in the first part of
the inhibitory and NRF-1 domain are conserved, but the
aa of the complete PPARγ interaction region are altered.

Table 2: Porcine amplicons detected with primer pair PGC1A+/-Ex7,9.

Tissue Amplicon Tissue Amplicon

Cerebrum 1 Tongue 1

Cerebellum 1, 3 Salivary gland 1, 2, 3

Brain stem 1, 3 Diaphragm 1

Stomach 1, 2, 3 Lung 1, 2

Duodenum 1, 2, 3 Heart right ventricle 1, 3

Jejunum 1, 2, 3 Heart left ventricle 1, 2, 3

Ileum 1, 2, 3 Backfat 1, 3

Caecum 1, 2, 3 Skin 1, 2, 3

Rectum 1, 2, 3 Epididymis 1, 2, 3

Spleen 1, 3 Uterus 1, 2, 3

Liver 1, 2, 3 Ovary 1, 2, 3

Gall bladder 1, 2, 3 Testis 1, 2, 3

Kidney 1, 2, 3 Sperm 2, 3

Adrenal gland 1, 3 Cumulus cells 1, 2, 3

Bladder 1 2–4 cell embryo 3

Mesent. lymph node 1, 2, 3 8 cell embryo 2, 3

M. long. dorsi 1, 2, 3 Morula 2, 3

M. pectineus 1, 3 Blastocyst 2, 3

1: 1017 bp: complete exon 8 was present. 2: 167 bp: splice variant in which last 66 bp of exon 8 are conserved. 3: 101 bp: splice variant in which 
exon 8 is completely spliced out.
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The second part of the inhibitory domain and NRF-1
interaction region is either altered or absent. The RNA
processing domain at the C-terminal end of the complete
protein is completely absent in the splice variants. These
results suggest that the putative proteins from both splice
variants show some remarkable alterations and this is
likely to have a large impact on the function of
PPARGC1A.

Currently, human medicine shows a great interest in
PPARGC1A, because of the important role this gene plays
in the worldwide problems concerning obesity, insulin
resistance and correlated diseases, such as type 2 diabetes
mellitus [26,27]. It has also been shown recently that a
lower expression of PPARGC1A is involved in the onset of
multiple neurodegenerative diseases, like Parkinson's,
Alzheimer's and Huntington's disease [28]. Because of its

significance, human kidney and liver tissue were also
tested for the presence of the newly detected splice vari-
ants in the pig. This showed that both splice variants were
also found in human liver and only the shortest splice var-
iant in human kidney. In porcine kidney, both splice var-
iants were detected, indicating the existence of possible
species differences. The discovery of these new splice vari-
ants could therefore be of importance for the human
research regarding PPARGC1A as well.

Conclusion
The results from this study contribute to a better under-
standing of this complex gene and are of possible use not
only for research in the pig industry regarding meat qual-
ity and carcass composition, but also for human research.
Considering the functional domains of the PPARGC1A
protein, it is very likely these splice variants considerably

Porcine PPARGC1A protein and comparison with the putative aa sequence of both exon 8 splice variantsFigure 3
Porcine PPARGC1A protein and comparison with the putative aa sequence of both exon 8 splice variants. (a) 
The functional domains of the complete porcine PPARGC1A protein are shown, together with the part of its amino acid 
sequence (Cprot) that is altered in the splice variants. NRF-1, nuclear respiratory factor 1; PPARγ, peroxisome proliferator-
activated receptor γ; MEF2C, myocyte enhancer factor 2C; SR, serine-arginine-rich domain; RRM, RNA recognition motif 
[1,22-24].(b) The putative protein and aa sequence of the exon 8 splice variant in which the last 66 bp of exon 8 are conserved 
(SV2). (c) The putative protein and aa sequence of the exon 8 splice variant in which exon 8 is completely spliced out (SV3). * 
indicates the stop codon of both splice variants.

       291                                                                 360

Cprot      GLTPPTTPPHKANQDNPFRASPKLKPPCKTVVPPPSKKTRYSESSGTHGNNSTKKGPEQSELYAQLSKTS 

291                             359

SV2  GRVLDHHIPGQDQGPQAVDPLQDLATTLSQATADTARTEILPCAPDHVQDLPTAGGPGMTATRNISTRG*

291                                          337

SV3 DLATTLSQATADTARTEILPCAPDHVQDLPTAGGPGMTATRNISTRG*

337

359

1 

1 

LXXLL                     NRF- -1           MEF2C                                     SR SR      RRM 

1 796activation        domain inhibitory                      domain 

(a) 

(b) 

(c) 
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affect the function of the protein and alternative splicing
could be one of the mechanisms by which the diverse
functions of PPARGC1A are regulated.
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