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Abstract
Background: Variance-stabilizing techniques have been used for some time in the analysis of gene
expression microarray data. A new adaptation, the variance-stabilizing transformation (VST), has
recently been developed to take advantage of the unique features of Illumina BeadArrays. VST has
been shown to perform well in comparison with the widely-used approach of taking a log2
transformation, but has not been validated on a spike-in experiment. We apply VST to the data
from a recently published spike-in experiment and compare it both to a regular log2 analysis and a
recently recommended analysis that can be applied if all raw data are available.

Findings: VST provides more power to detect differentially expressed genes than a log2
transformation. However, the gain in power is roughly the same as utilizing the raw data from an
experiment and weighting observations accordingly. VST is still advantageous when large changes
in expression are anticipated, while a weighted log2 approach performs better for smaller changes.

Conclusion: VST can be recommended for summarized Illumina data regardless of which Illumina
pre-processing options have been used. However, using the raw data is still encouraged whenever
possible.

Background
Gene expression microarrays allow messenger RNA
(mRNA) abundance to be quantified quickly and cost-
effectively on a genome-wide scale. The production of
mRNA is a key step in the process that leads from the
information contained within DNA to the formation of
the proteins that act within a cell. Quantifying the abun-
dance of mRNA is therefore of interest because it provides
much information regarding the state of the cell [1].

Microarrays for measuring mRNA expression make use of
probes that hybridize to fluorescently-labelled sample
material, where the measured level of fluorescence is used
to infer the expression level of each interrogated gene. Tra-
ditionally they are constructed by attaching probes
directly to a specific point on the array's surface. By con-
trast, the BeadArray expression platform developed by
Illumina makes use of probes attached to beads that are
subsequently randomly arranged on the array surface [2].
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There are approximately 30 beads for each type of probe
(a high degree of replication for a microarray), providing
robustness against systematic spatial influences on the
array.

For BeadArrays, the raw (bead-level) intensity informa-
tion is stored in a proprietary format. Until recently, only
summarized output (averaged values over the replicate
beads on a given array) was available from Illumina's
analysis software (BeadScan and BeadStudio). As such,
most published studies make use of summarized Illumina
data, a state that leaves the low-level (but vital) steps (e.g.
image analysis, background correction, summarization)
beyond the control of the data analyst.

The data from microarray experiments generally require
transformation in order to facilitate simple analyses such
as the confident fitting of basic linear models. Variance-
stabilizing transformations are applied to microarray data
in order to remove the mean-variance relationship in
intensities. A log2 transformation is the simplest variance-
stabilizing transformation commonly applied to microar-
ray data. Other, more sophisticated approaches have been
developed, such as the variance-stabilizing normalisation
(VSN) method of Huber et al. [3] and that of Durbin et al.
[4].

The VST method [5] is an adaptation of the VSN method-
ology for Illumina data, exploiting the replicate beads on
the array and is defined for intensity x as

where c3 is defined as the variance of bead types that esti-
mate background noise and c2 and c1 respectively repre-
sent additive and multiplicative levels of error in the
intensity.

Using previously published data [6], VST is found to out-
perform the approach of log2 transformation, based on
the results of a mixture experiment where each sample
was a pool of blood and placenta at various ratios. How-
ever, the authors commented on the then lack of a pub-
licly available spike-in experiment, a data set that would
have provided an ideal test for their method.

Coinciding with the publication of VST, Dunning et al. [7]
published an independent account of such a spike-in
experiment using customized Mouse WG-6 BeadArrays. In
addition to the approximately 48,000 probes (bead types)
included as standard, the content of these chips was mod-
ified to include 33 probes targeting bacterial and viral

genes absent from the mouse genome. These "spikes"
were added at specific concentrations on each array, and
hence the relative change in expression level of a particu-
lar spike between arrays is known a priori. The expression
levels of the remaining probes ("non-spikes") should not
change between arrays. Twelve different concentrations of
spike were used (1000 pM, 300 pM, 100 pM, 30 pM, 10
pM, 3 pM, 1 pM, 0.3 pM, 0.1 pM 0.03 pM, 0.01 pM and 0
pM) and each was replicated four times. Control experi-
ments such as this have proven useful for comparing low-
level analysis methods in other microarray platforms,
such as Affymetrix [8].

Access to the raw bead-level data allows some of the low-
level analysis steps to be explored in greater detail [7]. In
particular, it was shown that the local background correc-
tion and summarization steps carried out by BeadScan
and BeadStudio reduce bias and produce robust summary
measurements.

The "Background normalisation" method (BGN) available
in BeadStudio adjusts the intensities on each array by sub-
tracting the average expression level of the negative con-
trols (probes that have no targets in the genome being
studied) in order that arrays might have comparable base-
lines. In the analysis of the spike-in experiment, it was
shown that BGN resulted in many negative values, and
also in increased variability of intensity at low expression
levels when combined with the standard log2 transforma-
tion. Concordant with previously published observations
[6], it was concluded that BGN is not desirable.

It has also been shown that, by using the variances of each
bead type as inverse weights, the performance of linear
models intended to detect differentially expressed (DE)
genes can be improved [7]. This approach is generally
only possible if bead-level data are available and a log2
transformation applied prior to calculating bead type
averages and variances. We shall refer to this approach as
a weighted log2 analysis. Other advantages of having access
to data at the bead-level were also shown. Naturally such
data allow for detailed quality control and also for greater
flexibility in the choice of statistical model.

In this paper, we apply VST to data from the spike-in
experiment. This offers further validation of the VST
method, not only because the estimation of differential
expression can be objectively assessed, but also because
the microarray used is different: the mixture data used to
validate VST was from a HumanRef-8 BeadArray with
some 22,000 probes, rather than the 48,000 MouseWG-6
BeadArray used in the spike experiment. By design, Bead-
Arrays with 48,000 probes tend to have many more
probes at low intensity [7] than the HumanRef-8 BeadAr-
ray that only contains probes taken from a curated data-
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base. Since 48,000 probe BeadArrays are more widely
used, it is important to confirm that VST can be applied to
these higher density arrays with no impairment due to the
different distribution of intensities. Additionally, we will
investigate whether VST can reduce some of the problems
encountered when applying a standard log2 transforma-
tion after BGN.

Methods
The bead-level data for the spike-in experiment were read
by beadarray [9] (version 1.7.11) using the default back-
ground subtraction method. These bead intensities were
then filtered using a 3 median absolute deviation cut-off
to remove outliers. The data were summarized and trans-
formed (VST or log2) as appropriate, and the arrays were

then quantile normalized. The bead-level data were
reprocessed using both background subtraction and back-
ground normalization, and the 'lumi' software package [5]
(version 1.5.17) used to apply either a VST (with the
default settings) or a log2 transformation (with an offset
added if necessary to avoid negative values).

The linear model and subsequent analyses used to find DE
genes between arrays with different spike concentrations
have been previously described [7]. We obtained log-odds
scores quantifying the evidence for differential expression
for both the spike and non-spike probes. The 12 spike
concentrations allow for construction of 6 independent
contrasts. We considered two sets: one where neighbour-
ing concentrations are compared to provide the greatest

MA-plots show, for two arrays, the average log intensity (x-axis) plotted against the log-ratio of intensities (y-axis)Figure 1
MA-plots show, for two arrays, the average log intensity (x-axis) plotted against the log-ratio of intensities (y-axis). Here, we 
show the MA-plots for an array with spikes at concentration 3 pM against spikes at concentration 1 pM. In the top row, the 
arrays were transformed with a log2 transformation or VST. In the bottom row, the arrays were background normalized 
before transformation. In all plots, red dots mark the values for the spike probes and the dotted lines indicate the predicted log 
fold-change of spikes (1.73) and non-spikes (0) respectively.
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challenge for differentiation (1st concentration vs 2nd, 3rd

concentration vs 4th etc.) and one where a range of effect
sizes would be observed by contrasting pairs symmetric
about the middle concentrations (1st concentration vs
12th, 2nd concentration vs 11th etc.). Finally, a series of
smaller models were fitted, where only the 8 (of the 48)
arrays featuring in the contrast of interest (4 arrays for
each concentration) were considered.

ROC curves were also plotted, but not found to be inform-
ative as the spikes were consistently selected as DE, with
very few false positives (data not shown). All data and
scripts used in the analysis are available as supplementary
material [10].

Results
Figure 1 shows MA-plots comparing arrays with spikes at
3 pM and 1 pM. When BGN is not used, VST reduces the
range of observed log-ratios for the probes we expect not
to change. In the absence of BGN both the log2 transfor-
mation and VST separate the spikes well from the non-
spikes, but the log-fold changes achieved from the log2
transformation exhibit less bias.

Applying the transformations after BGN, we see that the
MA-plot for VST is little changed. By contrast, the combi-
nation of BGN and log2 transformation is to be avoided,
with much-reduced ability to separate out the spikes from
the non-spikes by considering the log2-ratio, as we have
previously noted [7].

Comparison of spike log-odds obtained for a particular contrast in the linear model fitted to the entire spike-in experiment of 48 arraysFigure 2
Comparison of spike log-odds obtained for a particular contrast in the linear model fitted to the entire spike-in experiment of 
48 arrays. On the left we show the difference between the log-odds obtained after VST and the log-odds obtained after a log2 
transformation. On the right, we show the difference between VST and a linear model incorporating log2 variances as weights 
(see [7]). In the top panels, we show six independent contrasts with the closest spike concentrations. The bottom panel shows 
six independent contrasts from the same linear model, but chosen to provide a range in anticipated log-ratios (the finer differ-
ences being to the right of the panel). In all cases, a positive value indicates greater log-odds obtained (i.e. more evidence for 
differential expression) after VST.
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We fitted three linear models to the entire spike-in exper-
iment: one using VST, one using a log2 transformation,
and the weighted log2 analysis. For two of the linear models
at a time, Figure 2 displays the differences in log-odds cal-
culated for six contrasts. VST is seen to lead to a more pow-
erful test than a standard log2 transformation, producing
higher log-odds values for the spikes (Figure 2a/2c). At the
same time, values for the non-spikes were not appreciably
altered (data not shown). The difference between VST and
log2 is seen to decrease as the spike concentrations get
closer together (Figure 2c).

When comparing VST to a weighted log2 analysis (Figure 2b/
2d), VST is seen to be more powerful for detecting differ-
ential expression for large differences, but the weighted log2
analysis outperforms VST for finer comparisons (such as
100 pM vs 30 pM and 3 pM vs 1 pM).

When the models are fitted to only the arrays involved in
the contrast of interest (Figure 3), the same broad results
are seen. The weighted log2 analysis, however, begins to
show more sensitivity than VST even at quite extreme
comparisons (e.g. 100 pM vs 0.03 pM).

Discussion
In agreement with the original investigation into VST, we
find that VST offers improvements over a standard log2
analysis. Thus, users with only the summarized output
from BeadStudio will find this method beneficial. In par-
ticular, VST can cope with data that have been background
normalized (BGN is implemented as the "subtract back-
ground" option in recent versions of BeadStudio). This
should not be confused with local background subtrac-
tion that has already been applied to bead-level data prior
to summarization.

Comparison of spike log-odds obtained for a particular contrast in the linear model fitted to the 8 arrays involved in that con-trastFigure 3
Comparison of spike log-odds obtained for a particular contrast in the linear model fitted to the 8 arrays involved in that con-
trast. On the left we show the difference between the log-odds obtained after VST and the log-odds obtained after a log2 trans-
formation. On the right, we show the difference between VST and a linear model incorporating log2 variances as weights (see 
[7]). In the top panels, we show six independent contrasts with the closest spike concentrations. The bottom panel shows six 
independent contrasts chosen to provide a range in anticipated log-ratios (the finer differences being to the right of the panel). 
In all cases, a positive value indicates greater log-odds obtained (i.e. more evidence for differential expression) after VST.
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Using a published spike-in experiment we are also able to
show that VST offers greater ability to detect DE genes
compared to a log2 transformation. This improvement
was seen to diminish as the spike concentrations being
compared become closer. At the same time, a weighted log2
analysis had more power than VST for finer concentration
differences.

In our initial analysis of the spike-in experiment, we used
all 48 arrays in the linear model. The size of such an exper-
iment may not be typical for some researchers and there-
fore we repeated the analysis using fewer arrays. In this
smaller experiment, VST was seen to have marginally
improved log-odds over a regular log2 analysis. Under
these conditions the weighted log2 analysis was seen to
improve the detection of DE genes in most cases, espe-
cially when comparing arrays with similar spike concen-
trations. We note that a weighted log2 analysis is
compromised without access to bead-level data. It would
be beneficial if Illumina's software had the option to work
with data on the log2 scale when creating summarized
data.

In summary, we have shown that the VST method does
indeed perform well, and can be applied to the popular
48,000 probe BeadArrays. However, there are still benefits
to having access to the raw data.
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