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Abstract
Background: Accurate and fast tools for comparing protein three-dimensional structures are
necessary to scan and analyze large data sets.

Findings: The method described here is not only very fast but it is also reasonable precise, as it is
shown by using the CATH database as a test set. Its rapidity depends on the fact that the protein
structure is represented by vectors that monitors the distribution of the inter-residue distances
within the protein core and the structure of which is optimized with the Freedman-Diaconis rule.

Conclusion: The similarity score is based on a χ2 test, the probability density function of which
can be accurately estimated.

Findings
Although numerous methods for comparison protein
three-dimensional (3D) structures were designed, we still
lack a unique, commonly accepted procedure to measure
the structural diversity between proteins [1]. In particular,
the structures of distantly related proteins should be
expressed by the appropriate way allowing their compari-
son and the 3D structure representations used in modern
algorithms are described in the reviews [2,3]. The most
accurate protein structure comparison methods produce
protein structure alignments that are computationally
intensive. Slower techniques may be preferable to analyze
and classify sufficiently small data sets. However, the time
criterion is crucial in the case of integrated survey of large
databases, like the Protein Data Bank or the domain col-
lections CATH and SCOP [4]. This problem is very similar
to that encountered few years ago in the case of macromo-
lecular sequence databases, which was solved by the

development of tools like FASTA [5], BLAST [6] or PSI-
BLAST [7] that allow one to effectively scan enormous
databases like UniProt [8], which presently contain sev-
eral millions of entries. Although protein 3D structure
databases are still much smaller, several representations of
protein structure suitable for rapid comparison without
alignment were proposed [9-13]. One of the fast and auto-
matic techniques for protein structural comparison is
PRIDE [9]. In this method the protein structure is repre-
sented via a series of distributions of inter-atomic dis-
tances allowing the use rapid comparison procedure
without alignment.

In the present communication, some improvements of
the original PRIDE technology are presented. They make
it more accurate than the original version without decreas-
ing its speed. The classification ability of the method was
tested on the CATH database.
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The PRIDE methodology
In original PRIDE version, a protein structure in defined
by the distributions of the distances between Cαi and
Cα(i+n) atoms, where n, which ranges from 3 to 30, is the
number of Cα atoms between them in the backbone joint.
The comparison between two protein 3D structures is
reduced to the comparison between distributions of inter-
residue distances. This is performed by chi-square contin-
gency table analysis, which estimates whether two distri-
butions represent the same overall population and allows
one to compute a probability of identity P, ranging from
0 and 1. Since 28 pairs of histograms are compares, 28 P
values are obtained and then averaged to give the overall
PRobability of IDEntity (PRIDE) between the two protein
3D structures. Such a similarity score can range, by defini-
tion, from 0 to 1, the latter value indicating the identity
between the two protein structures. In the next sections,
four modifications, introduced into this computational
procedure, will be described.

Amount of structural information
The maximal value of n, which was equal to 30 in the old
PRIDE version, is now selected as a function of the protein
dimension. Obviously, the histograms, in which inter-res-
idue distances are binned, must have a sufficiently high
number of observations to be compared via any statistical
tool. The number of observations in the histograms
increases with the length of the protein and decreases with
n. Therefore, histograms were generated for all n values
larger than 3 and lower than nmax, where nmax is the value
for which there are only 20 Cαi-Cα(i+n) distances. Clearly, if
n > nmax, the histograms would contain less than 20 obser-
vations and they were thus ignored. Therefore, the num-
bers of histograms are different for proteins of different
length in the modified PRIDE version. In the comparison
of two domains, represented by series of Cαi-Cα(i+n) histo-
grams, with 3 ≤ n ≤ nmax1 for the first domain and 3 ≤ n ≤
nmax2 for the second domain, the maximal value of n
(nmax) was defined as

nmax = min(nmax1, nmax2)

Moreover, only distances between residues belonging to
helices and/or strands were taken into account in the
modified PRIDE version, in order to increase the compu-
tational speed of the method. The STRIDE package, based
on the detection of hydrogen bonds patterns and back-
bone torsions, was used for secondary structure assign-
ment [14].

Optimization of the dimension of the histogram intervals
The building of a regular histogram from continuous data
demands a cautious specification of the number of bins.
In the old version of PRIDE, each bin width was arbitrarily
set to 0.5 Å, and adjacent bins were merged together so

that at least 5% of the observations were included in each
bin. Here a more rigorous approach was followed. Firstly,
inter-residue distances were binned in the histograms
with a fixed bin width of 0.1 Å, a value close to the average
expected uncertainty of protein atomic coordinates
obtained with crystallographic methods [15]. Then bin
widths are changed automatically to their optimal value
BS by using the Freedman-Diaconis rule [16]

BS = 2iqr(x)k-1/3

where k is the number of observations in the sample x;
iqr(x) is the interquartile range of the data of sample x,
that is the range between the third and first quartiles. The
iqr is expected to include about half of the data. The opti-
mal BS values are computed for a query protein structure,
and then they are used to change the histogram bins for
all domains in the scanned database. New optimal BS val-
ues must be recomputed for a new query. Despite this
might seem to be rather complicated and time consum-
ing, we verified that once the histograms for the entire
database are pre-computer and stored with very small bins
of 0.1 Å, all of them can be re-shaped to the optimal BS
very rapidly (see the paragraph "Computational speed"
below).

Distribution comparisons
While in the original version of PRIDE, the Cαi-Cα(i+n) dis-
tance distributions were compared using the contingency
tables [17], another statistical procedure is applied now.
Contingency tables are more suitable to analyze relation-
ships between nominal (categorical) variables and can be
applied to compare continuous distributions only by care-
fully selecting an arbitrary bin size in such a way that each
bin contains sufficient data. Here we adopted another
approach that is more suitable to compare continuous
distributions and that is computationally not more
demanding than the contingency table analysis. By
assuming that the distributions of both binned data sets
of inter-residue distances are equally unknown, it is possi-
ble to use the chi-square test to disprove the null hypoth-
esis that the two data sets can be described by the same
distribution. If Ri is the number of observations in bin i for
the first protein and Si is the number of observations in
the same bin i for the second protein, then the chi-square
statistics is

where
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and

χ2 ranges from 0 to the positive infinity. A large value of χ2

indicates that the null hypothesis is rather unlikely and
that the two proteins are considerably different, and χ2

can thus be used as a statistical measure of proximity
between two protein 3D structures. On the contrary, two
identical protein 3D models are associated with a χ2 value
equal to 0.

Furthermore, the degree of proximity between two pro-
tein structures can be also expressed by an incomplete
gamma function determining the chi-square probability
density function:

where Nb is the number of histogram bins, that corre-
sponds to a number of degrees of freedom for histograms
with an unequal number of observations. In this case the
proximity measure P ranges from 0 to 1 corresponding,
respectively, to the completely different and to the identi-
cal protein folds. 

 and Pn are computed for each pair of histograms of the
Cαi-Cα(i+n) distances for 3 = n = nmax. Then they are aver-
aged to estimate the global degree of protein structural
proximity. It must be observed that while χ2 is a distance

measure of proximity, with lower values associated with
two domains that are similar, P is a measure of similarity,
with higher values associated with two domains that are
similar. Beside this difference, both can be used as struc-
tural similarity scores and monitor exactly the same pro-
tein structural features. However, P has the definite lowest
and highest limits that are equivalent to the similarity
score used in the old PRIDE version.

Computational speed
Given the extreme simplicity of the algorithm, it is not
surprising that computations can be very fast. The most
time consuming step is the computation of the histo-
grams of the Cαi-Cα(i+n) distributions. However, they can
be pre-computed and stored in about 850 seconds (Xenon
3 GHz processor) for the 34,035 protein domains of Table
1, 29,098 of which are long enough to be represented by
at least 30 histograms and 4,937 of which are smaller and
can be represented by 10–30 histograms. The comparison
of a query with all the database entries takes on average
170 seconds (by using all the queries of Table 1), 20 of
which are needed for the optimization of the bin size,
according to the Freedman-Diaconis rule. The overall
speed is nearly identical to the speed of the old PRIDE ver-
sion. By comparison, the same amount of computations
can be performed in about 4,000 seconds by using the
SHEBA downloaded software [18]. Other computer pro-
grams, like for example VAST [18], are available only as
web-servers and it is thus impossible to compare their
computational speed with that of the new PRIDE version.
However, it was observed the VAST server is not particu-
larly fast [19], though this does not demonstrate that the
VAST algorithm is not.

Data sets
The new structure comparison method was benchmarked
against the CATH v3.0.0 database [20], which is a hierar-
chical classification of protein domains according to the
class C (prevalence of secondary structural types), archi-
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Table 1: The content of the datasets and the query lists used for PRIDE testing

Datase
t

Number of domains in the dataset Number of histograms used for the domain structure 
representation

Number of domains in the query list

E* D** Total

α β α/β α β α/β

1 29 098 > 30 2
4

2
5

25 2
5

2
5

25 149

2 4 937 10 – 30 6 6 6 8 8 8 42

*E corresponds to the "easy" cases when the queries belong to highly populated groups of investigated datasets containing at least 50 domains at 
the homologous superfamily classification level of CATH;
**D corresponds to the "difficult cases" when queries belonged to small groups having no more than 3 domains at the homologous superfamily 
classification level of CATH
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tecture A (the number, type, and reciprocal orientation of
the secondary structural elements), topology T (the topo-
logical connection of the secondary structural elements)
and homologous superfamily H (a common evolutionary
origin supported either by significant sequence similarity
or significant structural and functional similarity). Two
datasets were created (Table 1), one with domains large
enough to be represented by at least 30 distributions of
Cαi-Cα(i+n) distances, and the other with smaller domains,
for which 10 < nmax < 30. Domains containing more then
one polypeptide chain were disregarded since, by defini-
tion, PRIDE cannot handle them.

Query lists
A non-redundant series of CATH entries were randomly
selected from different superfamilies to be used as queries,
by ensuring that all the three principal classes C of the
database are equally represented (Table 1). Some were
large domains (nmax > 30) and other small domains (10 <
nmax < 30). About half of them were considered to be
"easy" queries, in the sense that they belong to a CATH
fold cluster containing at least 50 domains, and the others
were "difficult" queries that belong to small CATH fold
groups having no more than 3 domains.

Performance evaluation
The performance of the new PRIDE version can be exam-
ined by the computation and the analysis of the ROC
curves. The P value, which is a similarity score, is used to
calculate ROC curve in the present study. A threshold sim-
ilarity is consecutively decreased, with subsequent decre-
ments equal to 0.01, in the entire range of possible P
values, from 1 to 0. At each step, each of the queries (Table
1) was compared to all the entries of the databases (Table
1). As a consequence, 4,335,602 comparisons were per-
formed by considering the dataset of large protein
domains and 207,354 comparisons were necessary by
considering the dataset of small protein domains.

Each comparison can be classified in one of four catego-
ries, according to the CATH classification of two domains
and their P value. It can be i) a true positive (TP), if the
similarity between the query and the entry is higher that
the threshold value and if the query and the entry belong
to the same CATH fold; ii) false positive (FP) if the simi-
larity between the query and the entry is higher that the
threshold value despite the fact that they have different
CATH classification; iii) a false negative (FN), if the entry
and the query are in the same fold cluster despite their
estimated similarity is lower than the threshold value; iv)
a true negative (TN), if the similarity is estimated to be
smaller that the threshold value and if the query and the
entry are actually classified into different CATH fold
groups. On the basis of these definitions it is possible to

compute, for each threshold value, the sensitivity and the
specificity

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

and the ROC curve is obtained by potting Sensitivity
against (1-Specificity) for the entire range of possible
threshold values. Figure 1 shows the ROC curves obtained
as described above. It is necessary to remember that the
line through the origin with slope 1, that is the diagonal,
would correspond to the similarity detection based on a
random measure. Therefore, the area under ROC curve
equal to 0.5 is related to a random similarity measure,
larger values indicate better than random estimations, and
a value equal to 1 indicates perfect similarity. The areas
under the ROC curves, shown in Figure 1, are 0.87 and
0.82 for the first and second datasets of Table 1, respec-
tively. Not surprisingly, the area under the ROC curve is
larger (0.87) for the first dataset of Table 1, which con-
tains larger protein domains that can be described with at
least 30 histograms of Cαi-Cα(i+n) distances, and smaller
(0.82) for the second dataset, which contains smaller pro-
teins that are represented by a lower number of histo-
grams. Such values are considerably better than that
obtained by using the old version of PRIDE (0.55). These
values are also comparable to those obtained with two
other procedures for evaluating protein structure similar-

ROC curvesFigure 1
ROC curves. The solid line shows a ROC curve obtained 
by comparing 149 CATH domains with 29 098 CATH 
entries of the first dataset of Table 1 that contains large pro-
tein domains; the dashed line represents a ROC curve calcu-
lated for the 42 small CATH domains and 4 937 CATH 
entries of the second dataset of Table 1, containing small 
protein domains.
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ity – SHEBA (0.93) and VAST (0.90) that are computa-
tionally much more demanding then the methods
described in the present manuscript [18]. The areas under
the ROC curves were also computed by using separately
queries that are classified into the α, β, and α/β classes
within the CATH database in order to estimate the per-
formance of PRIDE on different types of proteins. Values
of 0.90, 0.90, and 0.83 were obtained by scanning the
database of 29,098 domains with the query sets contain-
ing 49 α proteins, 50 β proteins, and 50 α/β proteins
(dataset number 1 of Table 1), indicating that proteins
containing both helices and strands are more difficult to
be correctly identified, probably because of the higher
structural diversity of protein domains containing differ-
ent types of secondary structural elements. Additional
information is available at [21] (Downloads section).
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