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Abstract
Background: Chromosome location is often used as a scaffold to organize genomic information
in both the living cell and molecular biological research. Thus, ever-increasing amounts of data
about genomic features are stored in public databases and can be readily visualized by genome
browsers. To perform in silico experimentation conveniently with this genomics data, biologists
need tools to process and compare datasets routinely and explore the obtained results
interactively. The complexity of such experimentation requires these tools to be based on an e-
Science approach, hence generic, modular, and reusable. A virtual laboratory environment with
workflows, workflow management systems, and Grid computation are therefore essential.

Findings: Here we apply an e-Science approach to develop SigWin-detector, a workflow-based
tool that can detect significantly enriched windows of (genomic) features in a (DNA) sequence in
a fast and reproducible way. For proof-of-principle, we utilize a biological use case to detect regions
of increased and decreased gene expression (RIDGEs and anti-RIDGEs) in human transcriptome
maps. We improved the original method for RIDGE detection by replacing the costly step of
estimation by random sampling with a faster analytical formula for computing the distribution of
the null hypothesis being tested and by developing a new algorithm for computing moving medians.
SigWin-detector was developed using the WS-VLAM workflow management system and consists
of several reusable modules that are linked together in a basic workflow. The configuration of this
basic workflow can be adapted to satisfy the requirements of the specific in silico experiment.

Conclusion: As we show with the results from analyses in the biological use case on RIDGEs,
SigWin-detector is an efficient and reusable Grid-based tool for discovering windows enriched for
features of a particular type in any sequence of values. Thus, SigWin-detector provides the proof-
of-principle for the modular e-Science based concept of integrative bioinformatics
experimentation.
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Findings
Genomic information is encoded in DNA and as such
retained in a fairly steady configuration. In contrast to
RNA, proteins, and metabolites, DNA is organized by a
limited number of large chromosomes with relatively sta-
ble DNA sequences. Therefore, position in the DNA
sequence, i.e., chromosome location, provides a conven-
ient and essential scaffold for both the living cell and
molecular biological research. In cells, for example, chro-
mosomal organization is important for gene-transcription
processes. Expression-profiling studies showed that gene
expression is not only controlled at the level of individual
genes, but also via autonomous regulation of chromo-
somal domains [1-5]. This suggests the existence of
higher-order transcriptional regulatory mechanisms
related to DNA organization or structures. The use of
chromosomal organization in the life sciences is exempli-
fied by the popularity of genome browsers that use chro-
mosome location to map many genomic features, such as
genes and their products, regulatory elements, gene
expression, and epigenetic markers. The search for con-
nections between genomic features is important in
unraveling cellular mechanisms.

The pace at which omics experiments continuously keep
producing large amounts of data about genomic features
for an increasing number of sequenced genomes, creates a
need for new high-throughput methods for identification
of correlations between DNA related features [6-12].
Therefore, biologists would benefit from tools that could
quickly identify enriched regions of genomic features.
This would allow extensive, yet convenient in silico exper-
imentation based on routinely processing and comparing
multiple datasets. However, this requires these tools to be
implemented in such a way that they deal with the many
steps involved in this kind of experimentation. These
include: acquiring the data from local or remote data
repositories, converting it to the desired format, using it
with the actual application that searches for the desired
enrichment (possibly using Grid computation), visualiz-
ing the results, and comparing and/or integrating multi-
ple datasets. Therefore, such a tool should be developed
applying an e-Science approach [13-17]: it should be
generic with respect to which data it can analyze, easy to
adapt, and its parts should be reusable.

In an e-Science approach, a computational environment
that provides transparent access to distributed data, ade-
quate computational resources, as well as the necessary
interfacing tools, is called a virtual laboratory (VL). Work-
flow management systems (WMSs, [18-21]) are an example
of interfacing tooling that takes care of scheduling, keeps
track of task executions, and provides the management
framework necessary to develop applications inside a VL.

WMSs can be used to design scientific workflows that
automate in silico experimentation by providing a pipeline
for streaming large quantities of data through various
algorithms, applications and services.

This paper describes an e-Science based data integration
and analysis tool: SigWin-detector. This application can
detect clusters with increased (or decreased) density of a
genomic feature in a DNA-related sequence in a fast and
reproducible way. In the context of the development of a
VL, our tool was implemented as a workflow running
under WS-VLAM[20,21], a Grid-enabled WMS. A biologi-
cal use case shows its relevance for biological research. Sig-
Win-detector is based on a method previously used by
Versteeg and coworkers [4] to detect regions of increased
and decreased gene expression (RIDGEs and anti-RIDGES) in
human transcriptome maps (HTM). We improved the
original method by i) deriving an analytical formula for
computing the new hypothesis probability distribution,
which replaces the costly step of estimation by random
sampling and ii) developing a new algorithm for comput-
ing moving medians. While these improvements radically
increase the intrinsic efficiency of the method, imple-
menting SigWin-detector using a generic e-Science
approach with access to Grid resources broadens its appli-
cability and makes it amenable to a wide spectrum of
experiments on genomic features or in fact on any
sequence of values.

Significant windows and the mmFDR procedure
Versteeg et al. [4] identified clusters where the median
expression level of the genes involved is significantly
higher than expected (RIDGEs), using a moving median
false discovery rate (mmFDR) procedure (Figure 1). The
mmFDR procedure identifies RIDGEs by testing the input
gene-expression against the null hypothesis that the posi-
tion of the genes on the chromosomes does not affect
their expression levels. This same procedure can be used
to identify significant windows (i.e., windows in the input
sequence that have a median value that deviates signifi-
cantly from expected, if assumed that the ordering of the
numbers in the input sequence is random) related to any
genomic feature mapped to DNA sequences. In an even
wider scope, it can also be used to identify significant win-
dows in any sequence of numbers.

Avoiding permutations in the mmFDR procedure
Computationally, the most expensive step in the original
mmFDR procedure is the repeated determination of medi-
ans over sliding windows of permutations of the input
data to estimate the probability function corresponding to
the null hypothesis. Our first improvement to the original
method was to derive an exact formula for this distribu-
tion (see definitions and derivation in Additional file 1):
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Figure 1
Using a mmFDR method to detect RIDGEs in a human transcriptome map. Schematic representation of the moving 
median false discovery rate (mmFDR) procedure identifying regions of high and low density of gene expression (RIDGEs and 
anti-RIDGEs, respectively) [4]. (A) Input sequence, a human transcriptome map (HTM), i.e., expression values of genes 
ordered by their chromosome location (cyan; chromosome 6). (B) mm(w), moving medians of the HTM for a given window 
size S. (C) Determination of the high and low mmFDR thresholds at a given level α: The high threshold mk is the smallest gene 

expression value for which the , here f(m) is the theoretical probability distribution of mm(w), 

and g(m) is the observed distribution of mm(w). (In [4], f(m) is estimated by simple sampling). Similarly, the low threshold mj is 

the largest gene expression value for which . (D) Selection of significant windows in chromo-

some 6: RIDGEs (in red) all windows for which the median gene expression is higher than or equal to mk; anti-RIDGEs (in blue) 
all windows for which the median gene expression is lower than or equal to mj. (E) Output RIDGEOGRAM of chromosome 6. 
Each row (y-axis) in the RIDGEOGRAM represents a window size, ranging from S = 3 to S = M (the number of genes on the 
chromosome). Each column (x-axis) represents a sliding window number, ranging from w = S/2 to w = M-S/2 (hence the trian-
gular form). Color is used to mark window medians significantly above (red) or below (blue) the genome-wide median. The 
scheme shows median expression data for window size S = 69 and FDR thresholds level α = 5%.
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This exact formula reduces the number of cycles of com-
puting moving medians of an input sequence of approxi-
mately 25,000 entries from at least 5,000 to 1, giving
SigWin-detector the efficiency it needs to be used rou-
tinely and for processing and comparing multiple datasets
within minutes to hours, instead of days. This efficiency
could not be if f(m) was estimated by sampling the per-
mutation space Eπ, and counting the number of times m
was the median value in any sliding window of size S.

Speeding up the computation of moving medians
Although we removed the need for computing moving
medians over permutations of the input sequence, we still
need to compute medians of windows sliding over the
input sequence. We developed a new algorithm to com-
pute those moving medians efficiently by exploiting the
fact that moving medians for many window sizes must be
computed simultaneously (Figure 2). This new algorithm
is also suitable for computing any other order-statistics.

Additional Figure A1 (Additional file 2) shows a graph
comparing our moving medians algorithm with the com-
monly used Hardle and Steiger's algorithm [22]. While
the execution time of their algorithm increases with win-
dow size (for a fixed sequence size), the execution time of
our algorithm decreases with window size (Figure A1,
upper panel). Because SigWin-detector needs to compute
moving medians for many window sizes, our algorithm
has a clear advantage over Hardle and Steiger's algorithm.
In Figure A1, the break-even point of the cumulative com-
putation is for Smax around 400. The efficiency of our
method can be further improved by using a mixed algo-
rithm that uses Hardle and Steiger's algorithm for small
window sizes and our algorithm for large window sizes, or
by employing a divide-and-conquer approach. For exam-
ple, a two-phase algorithm would start by dividing the
input sequence into chunks of size 2M, with M ≥ 2Smax,
and applying the original algorithm to each chunk sepa-
rately. Similarly, the second phase computes the medians
for the missing sliding windows by dividing the sequence
into chunks of the same size, but now using an offset M.
This two-phase algorithm is also suitable for paralleliza-
tion.

Designing a Grid-enabled generic workflow
To broaden the applicability of the mmFDR procedure,
we implemented SigWin-detector using an e-Science
approach by implementing a general, reusable, and adapt-
able tool with access to Grid resources using the WS-
VLAM workflow management system[20,21].

First we split the procedure into a collection of workflow
components (called modules), each module performing a
specific task that may be fine-tuned using parameters. The
modules exchange data with each other by means of input
and output ports. We then can choose the appropriate
modules and compose a workflow suited to our specific
needs [16]. Figure 3 describes a basic workflow configura-
tion of SigWin-detector.

The SigWin-detector Config-Basic1 workflow was tested
on a Grid computer cluster composed of geographically
distributed computational nodes: Distributed ASCI Super-
computer 3 (DAS-3, [23]). Additional Figure A2 (Addi-
tional file 2) presents wall clock execution times of the
SigWin-detector Config-Basic1 workflow (Figure 3) for
input sequences of various sizes.

The basic workflow can be altered by substituting, delet-
ing, or adding modules. For example, we can extend the
workflow to get the input sequence from a remote uniform
resource identifier (URI)and then put the resulting SigWin-
map back into it. We can modify the workflow to generate
one SigWin-map per logical subsequence of the input
sequence, instead of a single SigWin-map for the complete
sequence [16]. We can also expand our workflow by com-
puting significant windows for high median values (e.g.,
RIDGEs) and significant windows for low median values
(e.g., anti-RIDGEs) simultaneously. The SigWin-detector
workflow itself can be made into a "composite module"
for more complex workflows. Furthermore, interconnec-
tion of WS-VLAM with the TAVERNA workbench [19] will
permit the use of the existing TAVERNA components in
connection with SigWin-detector. At the moment, Grid
authentication prevents WS-VLAM workflows being used
outside the Grid without the extra step of Grid certifica-
tion. However, we are working on a Taverna workflow
that encapsulates the SigWin detector, to be made availa-
ble through the myExperiment webpage [24].

Biological application: finding RIDGES in a human 
transcriptome map
Once we finished our basic SigWin-detector, we modified
it (Additional file 3) for application in our biological use
case that aims to find (anti-)RIDGES in transcriptome
maps. Figures 4 and 5 show a series of RIDGEOGRAMS
for gene expression data for a recent version of the human
transcriptome map (HTM) based on the UCSC release
hg18 [4], and Table 1 summarizes some RIDGE statistics.
Each RIDGEOGRAM displays both RIDGEs (red-shades)
and anti-RIDGEs (blue-shades), the different color shades
representing different mmFDR threshold levels. The size
of the resulting RIDGEOGRAMS is proportional to the
number of genes on a chromosome. We determined i)
genome-wide (anti-)RIDGEs, i.e., windows for which the
median expression is significantly higher (lower) than
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Computing moving medians for many window sizesFigure 2
Computing moving medians for many window sizes. Description of our moving medians algorithm and data structures 
used. The figure illustrates a computation with input sequence size N = 7, and window sizes S = 3, 5, 7. (A) Rank data structure: 
used to store the input sequence. The Rank data structure gives access to the input sequence in its original and ranked order. 
It also allows fetching elements according to their rank. (B) Marker data structure: helps navigation through the sliding windows 
while keeping track of the median (or any other desired order-statistics). The Marker data structure is a Boolean array used to 
keep track of the elements that are inside a sliding window by means of crossing out the elements that are outside it. It also has 
a pointer that keeps track of the ith remaining element. This pointer is used to track the median. The Marker structure 
assumes the sequence is in ranked order. For example, if a sliding window of size 3 of a sequence of size 7 contains elements 
ranked 5, 1, and 6, the corresponding Marker structure has elements ranked 2, 3, 4, and 7 crossed out, and its median pointer 
points to element ranked 5. (C) Moving median algorithm for window size S. Our algorithm computes the moving medians for 
window sizes S = Smin, Smin+dS,..., Smin+n·dS, starting at S = Smin. When the last sliding window of size S is reached, the algo-
rithm proceeds to the next window size (S+dS) by inserting the elements that are in the first sliding window of size S+dS and 
crossing out the elements that were in the last sliding window of size S and setting the new position for the median pointer 
(which is element mm(S+dS) = (S+dS+1)/2). The algorithm stops after computing the medians for the largest window size.
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Moving medians algorithm at 
window size S

1. Cross out all elements that are not in 
sliding window w=1.

2. Set median pointer  equal to the 
remaining element numbered 
mmS(w)=(S+1)/2 (blue arrow). 

3. FOR w=2 TO N-S+1

Update the Marker structure:
inser t the element that has entered it 

cross out the element that has left it. 

Move the median pointer according to 
the following rules:

Jump up to the next remaining 
element, if the rank of the element 
that has left the window is smaller or 
equal to the pointer value, and the 
rank of the element that has entered 
the window is larger than the pointer 
value.

Jump down to the previous 
remaining element, if the rank of the 
element that has left the window is 
smaller than or equal to the pointer 
value, and the rank of the element 
that has entered the window is larger 
than the pointer value. 
Remain where placed, otherwise.
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SigWin-Detector basic workflow using the WS-VLAM workflow composerFigure 3
SigWin-Detector basic workflow using the WS-VLAM workflow composer. Upper: A snapshot of the workflow. 
Lower: Short description of the functionality of each module, port connections, and output ports. The ports are named by an 
abbreviation of the module name followed by 'i' or 'o' (input or output respectively) and the port number. Input ports are 
colored in blue and output ports in red. The ports are numbered in the same order they appear in the workflow.

Module functionality port 
connections

Output ports description 

ColumnReader: Reads the input sequence E = {E1, 
E2, …, EN} from a selected column of a tab 
delimited file and transfers it to the output port. 

CRi1: (Not used) CRo1: A vector containing the input sequence E.

Rank: Computes the ranks R= {R1, R2, …, RN}
corresponding to E.

Ri1 CRo1 Ro1: The Rank structure corresponding to E, cf.
methods section, and Figure 8. 

Ro2: A vector containing R, a sorted version of E.

Ro3: A vector containing a sorted version of the 
non duplicate values of E.

SWMedian: Computes mS(w), the moving medians 

of E, for window sizes S = Smin,, Smin+ S, …, 

Smax=Smin+q S. Uses the algorithm described in the 
methods section. 

SWMi1 Ro1 SWMo1: The parameters SW=(N, Smin,, Smax, S)
corresponding to the sliding window structure. 

SWMo2: A sliding window structure containing the 
computed moving medians (i.e., a sequence of 
vectors. Each containing mS(w),

for S = Smin, Smin+ S, …, Smax).

SWMedianProb: Computes f S(m), the exact 
theoretical null hypothesis probability density 
function corresponding to the moving medians 
mS(w) using the analytical formula. 

SWMPi1 SWMo1

SWMPi2 Ro2
SWMPo1: A sequence of vectors. Each containing 

f S(m), for S = Smin, Smin+ S, …, Smax.

Sample2Freq: Generates gS(m), the normalized 
frequency counts corresponding to the moving 
medians mS(w). 

S2Fi2 SWMo2

S2Fi1 Ro3

S2Fo1: A sequence of vectors. Each containing 

gS(m), for S = Smin, Smin+ S, …, Smax.

FDRThreshold: Uses gS(m) and f S(m) to compute 
mk,S (or mj ,S), the high (or low) mmFDR thresholds 
at a given level . corresponding to each window 

size S, for S = Smin, Smin+ S, …, Smax.

FDRTi1 SWMPo1

FDRTi2 S2Fo1

FDRTi3 Ro3

FDRTo1: A sequence of high (or low) mmFDR 
thresholds mk,S (or mj ,S), one for each S.

SigWinSelect : Selects the windows for which the 
median value mS(w) is above (or below) the FDR 
threshold mk,S (or mj ,S). The resulting significant 
windows are written to a tab-delimited file. 

SWSi1 SWMo1 

SWSi2 SWMo2 

SWSi3 FDRTo1

SWSo1: Name of the file to which the resulting 
significant windows were written.

SWSo1: (Not used)  

SigWinPlotGrace:  Generates an XMGRACE [13] 
configuration file with instructions of how to plot 
the resulting SigWin-map. 

SWPGi1 SWMo1

SWPGi2 FDRTo1
SWPGo1: A file containing XMGRACE instructions 
on how to print the resulting SigWin-map. 

XmGrace: Displays the resulting SigWin-map using 
XMGRACE. 

XMGi1 SWSo1 –
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expected by considering the whole genome gene expres-
sion profile in the mmFDR procedure (Figure 4), and ii)
chromosome specific (anti-)RIDGEs, i.e., the same analy-
sis, but considering only the specific chromosome gene
expression profile (Figure 5). This distinction has a major
effect on the outcome. If the expression values of the
genes on a certain chromosome are typically significantly
higher than the genome-wide values, then there are less
chromosome specific than genome-wide RIDGEs (e.g.,
chromosome 19 in Figures 4 and 5 and Table 1). Con-
versely, if the expression values of the genes on a chromo-
some are typically significantly smaller than the genome-
wide values, then there are more chromosome specific
RIDGEs (e.g., chromosome 6 in Table 1 and Figures 4 and
5). In the case of anti-RIDGEs the opposite holds (e.g.,
chromosomes 17 in Table 1 and Figures 4 and 5). This
example shows the importance of choosing the right
sequence to compute the null hypothesis distribution.
Based on the fact that chromosomes are separate mole-
cules in a cell, one may favor the results from the individ-

ual chromosome SigWin-detector analysis to investigate
potential higher-order gene expression regulatory mecha-
nisms.

The RIDGEOGRAMS shown in Figures 4 and 5 only take
the ordering of the genes into account, and not their
actual physical position in the chromosome. However,
from a biological perspective it is likely that the higher
order gene-expression mechanisms that underlie RIDGEs
relate to an actual section of the chromosome rather than
a cluster of genes just ordered by their chromosome loca-
tion. So we used our SigWin-detector to take the physical
gene position into account by subdividing the chromo-
somes in stretches of constant value (250 kb). If a stretch
contains the beginning of one or more genes, their average
expression value is assigned to that stretch of DNA. For
this analysis we used the SigWin-detector Config-Sub2
with preprocessed HTM data and adapted parameters. The
resulting RIDGEOGRAMS are proportional to the chro-
mosome's size (Additional Figure A3, Additional file 2).

Table 1: HTM statistical data

RIDGEs anti-RIDGEs

all window sizes window sizes 19–59 all window sizes window sizes 19–59

chr median size N gw-R chr-R gw-R chr-R gw-aR chr-aR gw-aR chr-aR

Y 11 57772954 96 0 28 0 9 212 0 54 0
21 15 46944323 318 0 0 0 0 6957 0 266 0
18 16 76117153 488 0 8 0 0 23329 27 521 0
13 19 114142980 553 0 2 0 0 32667 10123 853 190
4 23 191273063 1172 0 323 0 0 121113 0 5 0
6 26 170899992 1406 28327 175351 873 1803 73404 12884 223 0
8 26 146274826 1067 213 61 32 0 83720 3110 176 20

10 26 135374737 1123 165 36813 9 0 9239 611 453 379
20 26.5 62435964 738 978 1350 292 538 4171 0 7 0
2 29 242951149 1908 1801 22546 247 52 2871 376 34 2
5 29 180857866 1276 722 8875 146 303 35406 10231 298 234
3 30 199501827 1581 47644 97097 806 1491 77920 85262 123 89
X 30 154913754 893 141 946 106 694 0 3667 0 0

genome 33 3080419480 26740 1115947 767239 2511 9406 545680 554438 4832 6844

1 34 247249719 2659 165349 154517 1611 1734 68461 271099 75 88
12 34 132349534 1382 1161 541 348 492 853 1262 530 661
7 35 158821424 1273 10549 19690 615 693 3614 5125 388 479

15 36 100338915 859 232 29110 0 0 0 0 0 0
11 38 134452384 1472 225772 150844 1508 814 0 14777 0 0
9 39 140273252 1103 62730 50105 214 571 7 27055 7 3

14 39 106368585 834 817 102 170 75 210 5968 186 489
17 44 78774742 1439 67267 0 1236 0 841 72325 434 1405
16 47 88827254 1075 107253 1388 1293 82 504 15676 63 1248
22 48 49691432 580 34220 0 255 0 12 242 12 219
19 52 63811651 1445 360606 17542 2748 55 169 14618 124 1338

chr: chromosome, median: median expression of all genes on a chromosome, size: chromosome size in base pairs, N: number of genes in 
chromosome, gw-R: number of genome-wide RIDGEs in a chromosome, chr-R: number of chromosome-specific RIDGEs in a chromosome, gw-aR: 
number of genome-wide anti-RIDGEs in a chromosome, chr-aR: number of chromosome-specific anti-RIDGEs in a chromosome.
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The anti-RIDGEs show a lower cut-off caused by the many
0 values in the HTM. The results from the SigWin-detector
analysis using chromosome position are substantially dif-
ferent to those using chromosome ordering. This applica-
tion demonstrated that SigWin-detector is an e-Science
tool that allows convenient in-silico experimentation. To
prove that this tool is generic, we used our workflow to
examine a simple sequential data set: an extended time
series of hourly ground level ozone concentration meas-
urements (Additional file 4).

Availability and requirements
• Project name: SigWin-detector

• Project home page: http://mad-db.science.uva.nl/
projects/sigwin/

• Programming language: C++

• Other requirements: SigWin-detector needs the WS-
VLAM workflow management system. WS-VLAM has a cli-
ent distribution and site distribution.

i. WS-VLAM client distribution: The WS-VLAM composer, a
graphical interface used for creating, modifying, and sub-
mitting workflows. Needs Java virtual machine
(version1.5 or higher).

ii. WS-VLAM site distribution: The WS-VLAM engine, which
is needed for running the workflows in a Grid. The WS-
VLAM engine needs a GLOBUS GT4 (4.0.3) installation.

To download these WS-VLAM distributions (Additional
file 5) go to http://staff.science.uva.nl/~gvlam/wsvlam/,
click the "Distributions" tab and follow the instructions in
it.
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Genome-wide RIDGES in a human transcriptome map (HTM)Figure 4
Genome-wide RIDGES in a human transcriptome 
map (HTM). Genome-wide RIDGEOGRAMS per chromo-
some for the HTM based on the UCSC release hg18 [4]. The 
expression levels are mapped to gene number. Each RIDGE-
OGRAM displays a composite of both RIDGES (red-shades) 
and anti-RIDGEs (blue-shades) for different mmFDR rate lev-
els: 10% (lighter shade), 5%, 1%, and 0.5% (darker shade). All 
the different window sizes are depicted because they give dif-
ferent specific results. In general, small windows suffer from 
noise and large windows suffer from lack of detail.

0 500 1000 1500 2000 2500

1

0

500

1000

1500

2000

2500

0 500 1000 1500

2

0

500

1000

1500

0 500 1000 1500

3

0

500

1000

1500

0 500 1000

4

0

500

1000

0 500 1000

5

0

500

1000

0 500 1000

6

0

500

1000

0 500 1000

7

0

500

1000

0 500 1000

8

0

500

1000

0 500 1000

9

0

500

1000

0 500 1000

10

0

500

1000

0 500 1000

11

0

500

1000

0 500 1000

12

0

500

1000

0 500

13

0

500

0 500

14

0

500

0 500

15

0

500

0 500 1000

16

0

500

1000

0 500 1000

17

0

500

1000

0

18

0

0 500 1000

19

0

500

1000

0 500

20

0

500

0

21

0

0 500

22

0

500

0 500

X

0

500

0

Y

0

Chromosome-specific RIDGES in a human transcriptome map (HTM)Figure 5
Chromosome-specific RIDGES in a human transcrip-
tome map (HTM). Chromosome-specific RIDGEO-
GRAMS per chromosome for the HTM based on the UCSC 
release hg18 [4]. The expression levels are mapped to gene 
number. Each RIDGEOGRAM displays a composite of both 
RIDGES (red-shades) and anti-RIDGEs (blue-shades) for dif-
ferent mmFDR rate levels: 10% (lighter shade), 5%, 1%, and 
0.5% (darker shade).
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Additional Figures.
Click here for file
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Additional file 3
Description of alternative SigWin-detector workflow configurations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-63-S3.pdf]

Additional file 4
Applicability of SigWin-detector: periodic time series of air quality data.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-1-63-S4.pdf]

Additional file 5
This tar file contains the source files of the WS-VLAM modules needed to 
run the SigWin-detector workflow, and some examples. To uncompress 
use. ▪ tar -xvzf SigWin-VLAM.v1.1.tar.gz (Linux users). ▪ WinZip or a 
similar tool.
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