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Abstract
Background: Borreliae employ multiple immune evasive strategies such as binding to complement
regulatory proteins [factor H (fH) and factor H like-1 (FHL1)], differential regulation of surface
membrane proteins, antigenic variation, and binding of plasminogen/plasmin and matrix
metalloproteinases. As a complement regulatory subunit, fH serves as a cofactor for the factor I-
mediated cleavage of C3b. fH binding by Borrelia has been correlated with pathogenesis as well as
with host diversity. Here we show the differential binding of borrelial proteins to fH from human
and animal sera.

Findings: Affinity ligand binding experiments, 2-D electrophoresis, and protein identification and
peptide de novo sequencing based on mass spectrometry, revealed novel fH putative binding
proteins of Lyme- and relapsing fever Borrelia. An OspA serotype-associated differential human and
animal fH binding by B. garinii was also observed, which could be related with the ability of some
strains from serotypes 4 and 7 to invade non-nervous system tissues. Also, the variable affinity of
binding proteins expressed by different Borrelia to animal fH correlated with their host selectivity.

Conclusion: The novel animal and human putative fH binding proteins (FHBPs) in this study
underscore the importance of evasion of complement in the pathogenesis of Borrelia infections.

Findings
Binding of fH on the borrelial cell surface is critical for
resistance to complement-mediated killing by inhibiting
the formation of the terminal complement complex [1,2].
Human fH binding has been reported and its association
with the pathogenic nature of Borrelia species was pre-
dicted earlier [1,3,4]. Complement resistant strains (e.g. B.

afzelii and B. hermsii) survive successfully in body com-
partments where complement concentration is high,
whereas it is proposed that B. garinii strains do not bind
fH on their surface and thus are prone to complement-
mediated killing; therefore, they would be able to invade
the nervous system where complement concentration is
low [5]. However, it has been reported that some OspA
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serotypes of B. garinii can infect and disseminate through
the skin [6], and resist human complement mediated kill-
ing [7].

The nature of human and animal fH binding ability to
Borrelia is complex. To date, the majority of studies have
focused on human fHBPs of B. burgdorferi s.s., B. afzelii
and B. hermsii, using purified fH or recombinant proteins
[3,8-10]. In contrast, here we have analyzed a wider panel
of Borrelia species, as well as human and different animal
sera as source of native fH. We also present how the reser-
voir competence for Borrelia parallels their fH binding
ability in different animal species, identifying known as
well as not yet described putative fHBPs.

Materials and methods
First, the reactivity of sheep anti-human fH polyclonal
antibody to fH from human and different animal species
was assessed (Figure 1). Human and animal (mouse, rat,
guinea pig, cattle, horse, dog and cat) serum samples, free
of antibodies against B. burgdorferi, were purchased
(Sigma-Aldrich), albumin depleted [11]., fractionated by
non-reducing SDS-PAGE (10 μg/well/animal species) and
transferred to nitrocellulose membranes. Purified human
fH served as a positive control. Membranes were blocked
overnight at 4°C in SuperBlock buffer (Pierce, Rockford,
IL, USA) and then incubated for 2 hours (37°C with shak-
ing) with sheep anti-human fH polyclonal antibody
(Abcam, Cambridge, UK) diluted 1:1,500 in TTBS buffer
[10 mM Tris/HCl (pH 8.3), 0.05% Tween-20 and 150 mM
NaCl] with 1% skim milk. Membranes were washed 3
times with TTBS, incubated with rabbit anti-sheep HRPO
antibody (Abcam) diluted to 1:400,000 in TTBS with 1%
skim milk for 1 hour (37°C with shaking) and then
washed 3 times as above. The reaction was developed by
chemiluminescence with SuperSignal West Dura substrate
(Pierce).

Subsequently, affinity ligand binding immunoblot (ALBI)
assays were performed to detect fHBPs of Lyme disease
and relapsing fever borreliae (Table 1). Borrelial strains
were grown in BSK-II medium at 33°C, harvested, washed
5 times with PBS supplemented with 5 mM MgCL2 and
then resuspended in ultra pure water containing 1% trif-
luoroacetic acid (Sigma-Aldrich), 1% of nuclease mix and
1% of a protease inhibitor cocktail (GE Healthcare). Cells
were sonicated and total protein concentration was meas-
ured (Bradford). Proteins were fractionated by non reduc-
ing SDS-PAGE, immunoblotted, and the membranes were
cut in 3 mm strips, which were incubated 2 hours either
with 1 ml of purified human fH (1,500 μg/ml) as a posi-
tive control or human and animal sera (1:4 dilution). fH
bound to borrelial proteins was detected with sheep anti-
human fH antibody and rabbit anti-sheep HRPO conju-
gate, as indicated above. Binding was detected by chemi-
luminescence.

To isolate and identify the borrelial proteins showing
human/animal fH binding ability, 2-D electrophoresis (2-
DE) coupled with MALDI-TOF-TOF was employed. For
that, borrelial proteins were cleaned (Bio-Rad Laborato-
ries S.A., Barcelona, Spain) and solubilized in Destreak
solution (GE Healthcare, Madrid, Spain). Protein solu-
tions (100 μg) were loaded by rehydration on 7 cm IPG
strips (pH 3-11NL or pH 4-7; GE Healthcare), and were
focused for 9,142 Vhr using the IPGphor system (GE
Healthcare). Strips were equilibrated and subjected to
SDS-PAGE on duplicated 15% polyacrylamide gels. One
gel was stained with the Silver Stain Plus Kit (Bio-Rad),
and the second was subjected to ALBI assay as described
above, to ascertain fHBPs. The protein spots of interest
were excised from 2-DE gels and digested [12] (Proteineer,
Bruker-Daltonics). Digested aliquots were mixed with α-
cyano-4-hydroxycinnamic acid in 33% aqueous ace-
tonitrile and 0.25% trifluoroacetic acid. This mixture was
deposited onto a 600 μm AnchorChip prestructured

Binding ability of anti-factor H antibody to human and animal fHFigure 1
Binding ability of anti-factor H antibody to human and animal fH. Non-reducing one-dimensional immunoblot of albu-
min depleted human and animal sera against sheep anti-human fH polyclonal antibody. Purified human fH was used as a positive 
control.
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MALDI probe (Bruker-Daltonics) and allowed to dry.
MALDI-MS data were obtained in an automated analysis
loop (Ultraflex, Bruker-Daltonics) equipped with a LIFT-
MS/MS device. Spectra were acquired in the positive-ion
mode at 50 Hz laser frequency, and 100 to 1000 individ-
ual spectra were averaged. Automated analysis of mass
data was performed (FlexAnalysis software; Bruker-Dal-

tonics). MALDI-MS and MALDI-MS/MS data were com-
bined (BioTools, Bruker-Daltonics) to search a non-
redundant protein database (NCBInr) using Mascot soft-
ware (Matrix Science). When Mascot search failed to
assign a peptide match with Borrelia proteins, manual de
novo sequencing [13] was attempted based on MALDI-
MS/MS spectra.

Table 1: fH binding proteins, binding strength, calculated molecular mass and isoelectric points estimated in 2-DE.

Borrelia species (strain) OspA Serotype MW of fHBP Estimated pIa Human and animal fH binding affinity

Hb M R G C Ho D Ca

B. burgdorferi s.s. (SKT2) 1 ~26 kDac 8.0-8.1 +++d +++ - - - - - -

B. afzelii (SKT4) 2 ~15 kDa 4.0-5.2 - +++ - - - - +++ ++
~26 kDa 6.8-7.1 +++ ++ - - - - - -

B. garinii (Rio2) 3 - - - - - - - - - -

B. garinii (PBi) 4 ~19 kDa 6.0-7.0 +++ - - - - - - -
~28 kDa 5.0-5.3 - +++ - - - - - -

B. garinii (G117) 5 ~26 kDa 5.6-6.2 -e ++ - - - - - -

B. garinii (SKT3) 6 - - - - - - - - - -

B. garinii (T25) 7 ~17 kDa 5.0-5.5 ++ - - - - - - -

B. garinii (CL1) 8 - - - - - - - - - -

B. valaisiana (VS116) NAf ~17 kDa 4.2-5.0 +++ - - - - - +++ -

B. andersonii (21123) NA ~15 kDa 5.5-6.1 + - - - - - - -
~17 kDa 8.0-8.8 + - - - - - + -
~23 kDa 6.1-6.6 + ++ - - - - - -
~26 kDa 8.0-8.3 - ++ - - - - - -

B. lusitaniae (Poti B2) NA - - - - - - - - - -

B. bissettiii (DN127) NA ~25 kDa 8.0-8.5 + - - - - - - -
~28 kDa 5.0-5.5 - +++ - - - - - -
~40 kDa 6.9-7.8 - + - - - - - -

B. japonica (HO14) NA ~15 kDa 4.8-5.2 - +++ ++ - - - - -
~19 kDa 4.5-5.0 - - ++ - - - - -
~22 kDa 6.0-6.8 + - - - - - ++ ++
~24 kDa 4.5-4.9 - - ++ - - - - -
~26 kDa 7.9-8.3 - +++ - - - - - -

B. hermsii (HS1) NA ~20 kDa 8.0-8.3 +++ +++ +++ +++ - - - -

B. parkeri (M3001) NA ~23 kDa 8.0-8.5 ++ - - - - - - -

B. anserina (ES-1) NA - - - - - - - - - -

B. coriaceae (Co53) NA ~40 kDa
~58 kDa

7.0-8.0
5.5-5.7

-
-

+++
+++

-
++

-
-

+++
+++

-
-

-
-

-
-

a pI: isoelectric point; b H: human; M: mouse; R: rat; G: guinea pig; C: cattle; Ho: horse; D: dog; Ca: cat; c boldface indicate those proteins identified 
by the mass spectrophotometry and related analysis in this study;d fH binding strength. +++: high; ++: medium; +: weak; -: negative; e This protein 
was positive when purified human fH was used; f NA: not applicable;
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As coiled-coil elements were demonstrated to be involved
in the presentation of the fH binding sites [14,15]., puta-
tive coiled-coil formation analysis for novel sequences
was performed by using PepCoil software [16]http://bio
web.pasteur.fr/seqanal/interfaces/pepcoil.html. Lipopro-
tein signal peptide analysis was done following the
description of Setubal et al. [17].

Results
A wide repertoire of human fHBP was detected in Borrelia 
species
Both B. afzelii and B. burgdorferi s.s. ~26 kDa proteins
bound human fH (Figure 2, panels A and B, lanes 1 and
2, respectively). A ~19 kDa protein of B. garinii serotype 4
and a ~17 kDa protein of B. garinii serotype 7 showed
human fH binding ability (Figure 2, panels A and B, lanes
4 and 7, respectively; Figure 3), while other B. garinii sero-
types (3, 6, and 8) did not express any human fHBP (Fig-

ure 2, panels A and B, lanes 3, 6 and 8, respectively). Also,
a ~26 kDa fHBPs was observed in B. garinii serotype 5
when using purified human fH (Figure 2, Panel A, lane 5),
although the corresponding band when using human
serum (Figure 2, Panel B, lane 5) was not observed, prob-
ably due to the lesser amount of fH present in human
serum compared to the amount of purified fH used in the
experiment. B. valaisiana, B. andersonii, B. bissettii and B.
japonica also expressed human fHBPs (Figure 2, panels A
and B, lanes 9, 10, 12 and 13, respectively), although B.
bissettii binding was weaker when using human serum
than purified human factor H, again probably due to the
lesser amount of fH present in human serum. Conversely,
B. lusitaniae did not show any human fHBP in any of the
assays (Figure 2, panels A and B, lane 11). B. parkeri
expressed a ~23 kDa human fHBP in our study (Table 1;
Figure 2, panels A and B, lane 15). A ~20 kDa human fH
putative ligand of B. hermsii was also observed in our

Affinity ligand binding (ALBI) assaysFigure 2
Affinity ligand binding (ALBI) assays. Non-reducing one-dimensional immunoblot of whole cell sonicates of different Bor-
relia species against purified human fH (Panel A), human serum (Panel B), and mouse serum (Panel C).
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study (Table 1; Figure 2, panels A and B, lane 14). Consist-
ent with earlier report [3], in the case of B. anserina, the
causative agent of avian borreliosis, and B. coriaceae, the
causative agent of epizootic bovine abortion, no human
fHBPs were observed.

Animal fHBPs were also observed in different Borrelia 
species
Some of the murine fH putative ligands that showed no
affinity to human fH in the study were ~15 kDa protein of
B. afzelii, ~28 kDa protein of B. garinii serotype 4, ~28 and
~40 kDa proteins of B. bissettii, ~15 and ~26 kDa proteins
of B. japonica, and ~40 and ~58 kDa proteins of B.
coriaceae (Table 1; Figure 2, panel C, lanes 1, 4, 12, 13 and
17, respectively).

Amongst Lyme disease Borreliae, only B. japonica ~15 kDa,
~19 kDa and ~24 kDa proteins showed rat fH binding
(Table 1), while no affinity for guinea pig fH was
observed. However, B. hermsii ~20 kDa protein showed
affinity for both rat and guinea pig fH (Table 1). As with
mouse fH, B. coriaceae ~58 kDa protein showed affinity
for rat but not for guinea pig fH (Table 1). As expected,
none of the B. anserina proteins showed affinity for rodent
fH.

Four Lyme disease- (B. afzelii, B. valaisiana, B. andersonii
and B. japonica) and none of the relapsing fever Borrelia
expressed canine fH binding proteins (Table 1). The feline
fH binding pattern in the array of Borrelia studied herein
was similar to that of canine fH, except in VS116 (B. valai-
siana) and 21123 (B. andersonii) strains, which were nega-
tive.

Finally, none of the Borrelia species tested, except B.
coriaceae (~40 and ~58 kDa proteins), bound bovine fH
(Table 1). Likewise, none of the Borrelia species tested pos-
sessed fHBPs that bind horse fH.

Identification of human and animal fHBPs
From the ALBI assays, we were able to identify some
human fHBPs, not yet described as part of the comple-
ment evasion system of Borrelia. Although Mascot soft-
ware failed to find any significant protein hit for the ~19
kDa protein of B. garinii serotype 4 (Table 1, Figure 3),
manual de novo sequencing generated the peptide
sequence SNEKLEEDEENEAQQVNSLQNR (Figure 4).
The short input BLAST search showed a complete
sequence homology with a hypothetical protein of B. gari-
nii PBi (Genbank AAU07257). Unfortunately, neither
information regarding the function and topology of this
hypothetical protein was available in the protein data-
bases nor proofs of binding were provided to exclude the
probability of a contamination, although in silico analysis
indicated that there was a high probability of two coiled-
coil formations near the C-terminus (120 to 147 and 118
to 152 residues with a probability of 1.00). Although
coiled-coil motifs are not specific of fHBPs, their presence
has been described to be required for the formation of the
fH binding site [14], therefore supporting the role of this
novel protein in human fH binding [14,15].

B. japonica ~22 kDa human fHBP (Table 1) was identified
as OspE-related lipoprotein (GenBank-accession
AAC62921), while ~26 kDa human fH binding proteins
of B. burgdorferi s.s. and B. afzelii (Table 1) were identifed
as CspA (cspA gene, BBA68) and BaCRASP-1 (ortholog of
CspA; mmsa71 gene) respectively.

The ~15 kDa murine fH binding B. afzelii protein (Table
1) was identified as an outer membrane protein [Gen-
Bank-accession YP_853823], whilst rat fH binding ~19
kDa protein of B. japonica (Table 1) was identified as
OspE-related lipoprotein (GenBank-accession
AAC62921). Both proteins showed acidic pIs (4.0 – 5.2)
in 2-DE in agreement with their theoretical pI (data not
shown). The Mascot search for mouse fH-binding ~28
kDa protein of B. garinii serotype 4 showed a significant
match and pI in agreement with the recently described
BgCRASP-1 (likely to be orthologous of CspA; GenBank-
accession CAH10086).

We identified a ~58 kDa B. coriaceae protein (Table 1) as
a member of the bacterial extracellular solute-binding
protein (BESBP) family. In fact, this is a probable lipopro-
tein according to the known features for lipoprotein signal
peptides in spirochaetes [17]. For the ~40 kDa bovine
fHBP of this species (Table 1) no confident protein match
was found. Manual de novo sequencing for ~20 kDa B.
hermsii protein (Table 1) using the corresponding MS/MS

Example of 2D ALBI assayFigure 3
Example of 2D ALBI assay. Two-dimensional (pH 3-
11NL) immunoblot of a whole cell sonicate of B. garinii sero-
type 4 (strain PBi) against human serum, showing a reactive 
protein of ~19 kDa.
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fragmentation spectra yielded two putative sequences:
TLDNLLK (815.9 Da) and YLLVIFLLLSLASCDLFLK
(2185.2 Da), which revealed high homology with the ear-
lier characterized FhbA [18] of B-hermsii. (GenBank-acces-
sion AAY42861).

Discussion
Among the putative human fHBPs, we have found a ~19
kDa B. garinii serotype 4 protein different (only 12.3% of
amino acid sequence similarity) from the earlier reported
BgCRASP-1 described in this genospecies [19], as well as
from the earlier cited B. burgdorferi s.s. or B. afzelii fHBPs.

It is proposed that the fHBPs of Lyme disease borreliae
possess linear sequence elements involved in fH binding
[20]. However, a sequence similarity of 15 to 18%
between CspA and the rest of Erp related fHBPs (ErpA,
ErpC and ErpP) indicates that this may not always be the
case. A further detailed study has provided evidence that
fH binding is rather dependant on protein conformation
[5], and formation of coiled-coil motifs [10,14]. The high
probability of coiled-coil formation observed in in silico
analysis for this putative ~19 kDa human fHBP and its
amino acid divergence from other fHBPs strengthens
these findings.

MALDI-TOF based identification and de-novo sequencingFigure 4
MALDI-TOF based identification and de-novo sequencing. (Top) MALDI-MS spectrum from the ~19 kDa protein of B. 
garinii ST4 (strain PBi). Relevant mass signals employed for database searching have been labeled and known trypsin and keratin 
peptide signals have been marked with a black triangle. The precursor ion selected for subsequent MS/MS measurement is indi-
cated by an arrow. (Bottom) MALDI-MS/MS spectrum from the above precursor ion at m/z = 2603.19. Ions ascribed to the 
main fragmentation series, y (C-terminal series) and b (N-terminal series) are labeled, and C-terminal fragment ions produced 
by the loss of ammonia (-17 amu) are indicated by an asterisk (*). The amino acid sequence obtained by manual de novo 
sequencing is displayed showing assignment of y and b fragment ions. The letters K and L are used to indicate ambiguous ascrip-
tion to glutamine/lysine and isoleucine/leucine pairs, respectively.
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B. garinii is the most heterogeneous species in terms of
plasmid content and OspA serotype [21,22], and these
differences could account for different fHBP expression
and complement susceptibility. Therefore, it is not at all
surprising that some of the B. garinii serotypes that bound
human fH in this study (OspA serotypes 4 and 7) also
resisted complement mediated killing in a previous exper-
iment [7]. Human fH binding by B. valaisiana could cor-
respond to its proposed ability to produce erythema
migrans [23], and the absence of human fH binding by B.
anserina and B. coriaceae observed in our experiments cor-
relates with the fact that these species do not infect
humans.

The host selectivity of different Borrelia species correlates
with their complement sensitivity, and thus also with
their fH binding profile [7,24,25]. We show novel murine
fH putative ligands expressed by Lyme disease Borrelia and
B. coriaceae. The murine fH binding ability of B. bissettii
and B. japonica strengthens their survival in rodents
[26,27]. Moreover, the putative murine fHBP identified
herein in B. garinii OspA serotype 4 correlates with the
described ability of these strains to survive in mice [28].

We and others have reported that cattle and horses are not
suitable hosts for Lyme disease related Borreliae [7,24,29],
which strongly correlates with the inability of borrelial
proteins to bind bovine and equine fH. However, binding
of bovine fH only by B. coriaceae (~40 kDa & ~58 kDa pro-
teins) suggests that cattle are a primary host for this Borre-
lia species. We have found a ~58 kDa protein that appears
to have a bovine fH binding ability, to be a BESBP that
may be an immune evasion tool of B. coriaceae in bovine.
Like in other fHBPs, the ~58 kDa protein is a putative lipo-
protein, as per the requirements described by Setubal et al.
[17]., which suggest that it is located in the membrane.

The role of carnivores as hosts for Borrelia is probably lim-
ited. In this study we have noticed canine fHBPs in B.
afzelii and B. valaisiana and, although with weak signals,
also in B. andersoni and B. japonica, that could account for
the ability of these genospecies to infect dogs [30]. Feline
fHBPs has been detected, as well, in B. afzelii and B.
japonica, although neither good data regarding reservoir
competence nor pathogenicity of Borrelia in these hosts is
available.

In summary, the fH binding strategy employed by Borrelia
species in different hosts is complex. Novel, putative
human and animal fHBPs have been found in this study,
which highlights the multiplicity of the immune evading
arsenal that Borrelia possesses.
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