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Abstract
Background: The recent availability of genomic sequences and BAC libraries for a large number
of mammals provides an excellent opportunity for identifying comparatively-anchored markers that
are useful for creating high-resolution radiation-hybrid (RH) and BAC-based comparative maps. To
use these maps for multispecies genome comparison and evolutionary inference, robust
bioinformatic tools are required for the identification of chromosomal regions shared between
genomes and to localize the positions of evolutionary breakpoints that are the signatures of
chromosomal rearrangements. Here we report an automated tool for the identification of
homologous synteny blocks (HSBs) between genomes that tolerates errors common in RH
comparative maps and can be used for automated whole-genome analysis of chromosome
rearrangements that occur during evolution.

Findings: We developed an algorithm and software tool (SyntenyTracker) that can be used for
automated definition of HSBs using pair-wise RH or gene-based comparative maps as input. To
verify correct implementation of the underlying algorithm, SyntenyTracker was used to identify
HSBs in the cattle and human genomes. Results demonstrated 96% agreement with HSBs defined
manually using the same set of rules. A comparison of SyntenyTracker with the AutoGRAPH
synteny tool was performed using identical datasets containing 14,380 genes with 1:1 orthology in
human and mouse. Discrepancies between the results using the two tools and advantages of
SyntenyTracker are reported.

Conclusion: SyntenyTracker was shown to be an efficient and accurate automated tool for
defining HSBs using datasets that may contain minor errors resulting from limitations in map
construction methodologies. The utility of SyntenyTracker will become more important for
comparative genomics as the number of mapped and sequenced genomes increases.

Background
Understanding of the comparative organization and evo-
lution of mammalian genomes has dramatically
improved with the availability of complete genome
sequences and detailed physical maps of chromosomes

for a growing number of species [1]. Recently, the
National Human Genome Research Institute sponsored
genome sequencing of 24 mammalian species represent-
ing 15 orders, but a majority of these genomes will be
sequenced to only 2× coverage [2]. Despite the limited
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coverage, these genomic sequences are an excellent
resource for constructing high-resolution radiation-
hybrid (RH) comparative maps following a procedures
described earlier for BAC-end sequences [3,4]. High-reso-
lution RH comparative maps can provide as high level of
granularity of comparative information as 7× genome
sequence assemblies but at the fraction of the cost [5]. For
example, RH maps have been used to discover specific fea-
tures within evolutionary chromosomal breakpoint
regions and homologous synteny blocks (HSBs) [1].

Automated tools for HSB identification [6-9] use different
approaches to tolerate errors arising during the construc-
tion of RH maps. Earlier we proposed a set of rules to
compensate for errors in comparative maps built with RH
mapping data [1]. Here we report the development of an
algorithm and a program that automatically defines HSBs
on RH and gene-based comparative maps using this rule
set.

Methods
As an input, SyntenyTracker uses a tab-delimited file con-
taining information that includes chromosome assign-
ment of orthologous markers in two genomes, position of
each marker in the chromosomes of both genomes, and
marker identifiers. The markers in the input table are
sorted on the basis of their chromosome assignments and
positions in one of the two genomes. This genome is
termed as the "reference genome." The second genome is
called the "target genome" (see additional file 1: Table S1
for an example of the input file format). Coordinates are
provided in base pairs or map units, thus making Syn-
tenyTracker suitable for building HSBs from any compar-
ative map. Description of the SyntenyTracker algorithm is
presented in Figure 1. For the pseudocode implementa-
tion of the algorithm see additional file 1. SyntenyTracker
provides output as two text files. The first file contains the
original input with HSB identifiers added to each line. The
second file contains information on the chromosome
assignment, start and end chromosome coordinates and
relative orientation of each HSB in the genomes com-
pared.

The SyntenyTracker tool is freely available online http://
www-app.igb.uiuc.edu/labs/lewin/donthu/Synteny_
assign/html/. The user can select from two modes that
include "Radiation Hybrid" mode and "Orthologous
Gene" mode. The major difference between these modes
is that in the "Radiation Hybrid" mode definition of the
HSB orientation takes into consideration possible "flips"
of adjacent markers on a comparative map.

Testing
We tested SyntenyTracker with several datasets, including
a cattle-human RH comparative map comprised of 3,204
markers [4], and a dataset containing 14,380 orthologous

gene pairs with one-to-one relationships between the
human and mouse genomes (Ensembl release 42). For the
cattle-human comparative map, among the 196 HSBs
defined by SyntenyTracker, 189 HSBs completely match
HSBs manually defined by Everts-van der Wind and cow-
orkers [4] using the same set of rules that we implemented
in SyntenyTracker (see additional file 2 for SyntenyTracker
output compared to manually defined HSBs). On BTA16,
SyntenyTracker combined two HSBs defined by Everts-
van der Wind and coworkers [4]. In this case, singleton
markers interrupting the HSBs were ignored by Syn-
tenyTracker according to predefined settings [1]. In two
cases, on BTA25 and BTA26, blocks of "out-of-place"
markers (for definition of "out-of-place" marker see addi-
tional file 1) defined as HSBs by Everts-van der Wind et al.
[4] were ignored by SyntenyTracker. In Everts-van der
Wind et al. [4] two HSBs were defined in region 0–832
map units on BTA3 because of two closely linked "out-of-
place" markers that mapped to BTA16. SyntenyTracker
combined these two HSBs ignoring the "out-of-place"
markers according to the rule that does not allow "out-of-
place" markers to break other HSBs. Similarly, two HSBs
on BTA5 and another two on BTA15 were merged. On
BTAX, SyntenyTracker detected a missing inversion
defined by three consecutive markers (CC553554,
BZ931493, X03098) and identified three HSBs whereas
Everts-van der Wind and coworkers found one (Figure 2).
Thus, SyntenyTracker is useful for identifying errors made
by manual assignment using predefined rules [1,4].

To verify the quality of HSB definition by SyntenyTracker
we selected another tool that was designed to work with
radiation hybrid comparative maps for a detailed compar-
ison. Among many synteny-defining tools we found that
only AutoGRAPH [6] was designed to work with RH com-
parative maps. Other popular tools, e.g. GRIMM-Synteny
[7] were made to work with sequenced genomes and were
not suitable for the comparison.

To define "conserved segments ordered" (CSO), the
equivalent of HSBs AutoGRAPH first assigns a numerical
integer to the markers in both reference and tested
genomes and calculates adjacency penalties between con-
secutive markers on tested genomes. AutoGRAPH breaks
a CSO if the adjacency penalty exceeds the penalty chosen
by the user. The main difference with SyntenyTracker def-
inition of HSBs is that SyntenyTracker checks the size of
inversions and compares them to the threshold selected
by the user. The number of markers in an inversion can-
not be less than 3. (See additional file 1 for rules for defin-
ing HSBs). A change in the order of markers caused by
single marker is ignored by SytenyTracker unlike Auto-
GRAPH. In addition SyntenyTracker checks if there are
any markers in other reference chromosomes that could
interrupt the order of the markers in an HSB.
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Using the same comparative map dataset we performed
comparison of HSB definitions made by SyntenyTracker
with analogous CSO defined by AutoGRAPH [6]. Using
AutoGRAPH with default parameters, we were not able to
define HSBs for the whole-genome dataset due to limita-
tions in the web application. To run the comparison with
AutoGRAPH we had to break our dataset into smaller
datasets, each corresponding to an individual reference
genome chromosome. Therefore, to define HSBs on the
cattle-human RH comparative map, AutoGRAPH was run
30 times for each of the 30 reference chromosomes. This
resulted in definition of 180 HSBs (see additional file 2:
Table S1 for HSBs defined manually, with SyntenyTracker

and AutoGRAPH; additional file 2: Table S2 for complete
summary of the differences in SyntenyTracker and Auto-
GRAPH HSB definitions). In 10 cases, AutoGRAPH com-
bined two HSBs defined by SyntenyTracker because of an
interrupting HSB that was located on another reference
chromosome. On BTA2 and BTAX, inversions defined by
more than three consecutive markers were unaccounted
for by AutoGRAPH. In four cases AutoGRAPH did not
account for markers mapped to the same positions on the
RH map, resulting in deletion of four HSBs. In one case
(on BTA26) AutoGRAPH defined two "out-of-place"
markers as an HSB. In two additional cases HSBs were
broken because of the presence of singleton markers.

Schematic representation of the algorithm for identification of HSBs with SyntenyTrackerFigure 1
Schematic representation of the algorithm for identification of HSBs with SyntenyTracker.
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We then compared AutoGRAPH and SyntenyTracker defi-
nitions of HSBs on the same set of orthologous genes in
the human and mouse genomes. The set of 14,380 othol-
ogous markers was analyzed in one run with Syn-
tenyTracker and in 23 runs by AutoGRAPH.
SyntenyTracker defined 313 HSBs, whereas AutoGRAPH
defined 358 (see additional file 3: Table S1 for the list of
HSBs defined by SyntenyTracker and AutoGRAPH on the
set of human-mouse orthologous markers, and additional
file 3: Table S2 for the summary of discrepancies in Syn-
tenyTracker and AutoGRAPH HSB definition). The major-
ity of discrepant cases can be grouped into 3 categories.
The first category includes cases when AutoGRAPH broke
HSBs defined by SyntenyTracker because of a single
marker from other regions of the same or other ortholo-
gous chromosomes positioned within these regions. The
second category includes cases when SyntenyTracker

ignores small inversions because of default parameters
that require 3 consecutive markers ≥300 Kb apart to define
orientation of the block. The first two categories of dis-
crepancies in HSB definitions between SyntenyTracker
and AutoGRAPH can be explained by small differences in
the rules used by these two tools and can be avoided by
adjusting HSB definition parameters in either of the tools.
The last category includes cases when AutoGRAPH joined
HSBs defined by SyntenyTracker. For such cases an inter-
rupting HSB was located on another reference chromo-
some, and therefore genuine chromosomal
rearrangements were likely missed using AutoGRAPH.
This can only be fixed by changing the algorithm of the
tool to work with the whole-genome set rather than with
an individual chromosome (see additional file 3: Table S2
for the list of discrepancies).

An inversion of CC553554, BZ931493, and X03098 markers (3.2 human-Mb) on BTAX was identified by SyntenyTracker but not by manual analysis [4]Figure 2
An inversion of CC553554, BZ931493, and X03098 markers (3.2 human-Mb) on BTAX was identified by Syn-
tenyTracker but not by manual analysis [4].
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BZ906622 90,655,231 90,655,439

CC570277 91,333,708 91,333,794

CC567726 92,441,494 92,441,585

BZ924247 94,748,711 94,748,870

BZ849012 95,673,244 95,673,600

BZ856917 96,723,208 96,723,833

CC570389 97,887,907 97,888,533

BZ940511 98,909,668 98,909,997

CC558458 99,924,881 99,925,083

BZ871035 100,464,999 100,465,272

CC775603 101,524,529 101,524,863

CC553554 105,428,038 105,428,196

BZ931493 104,079,724 104,079,817

X03098 102,851,587 102,852,153

CC477330 102,145,352 102,145,830

CC582591 105,870,059 105,870,542

CC520217 106,708,724 106,708,907

CC481236 107,635,869 107,636,038

BZ945492 108,535,407 108,535,532

AW461447 108,711,763 108,711,837

BZ906252 109,499,336 109,499,493

CC511548 110,502,258 110,502,335

CC576656 111,499,778 111,500,198

CC587934 112,341,608 112,341,821

BZ900268 113,677,621 113,677,842

AW462747 114,707,002 114,707,541
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We investigated all 15 cases of singleton gene markers that
caused AutoGRAPH to break the HSBs. The same markers
were ignored by SyntenyTracker. For these 15 genes we
examined consistency of orthologous relationships in dif-
ferent builds of the human and mouse genomes. For 10 of
15 genes we found inconsistency in the definition of
human-mouse orthology pairs in different genome builds
or annotation sources, indicating a problem in defining 1
to 1 orthology between these human genes and their
mouse counterparts (see additional file 3: Table S3 for the
list of discrepancies and results of orthology analysis).

To verify that the SyntenyTracker algorithm is robust and
that the results obtained from its use are not affected by
modifications to the input file that do not change the
comparative map, we have done the following tests: a) the
order of target genome chromosomes in the original
human-mouse orthologous gene input file was changed;
b) the order of markers within both reference and target
chromosomes was inverted. HSBs defined using such
modified input files were compared to the HSBs defined
using the original input file. All HSBs from the modified
input completely matched original HSBs.

To examine how SyntenyTracker accounts for the uncer-
tainties in the order of markers on the RH comparative
map when several markers are mapped to exactly the same
position on the RH map, we changed the order of such
markers on the human-cattle comparative map [4],
defined HSBs, and compared them to the HSBs defined
from the original map. No differences in HSB definition
were detected.

Conclusion
SyntenyTracker is able to define HSBs on whole-genome
comparative data following the set of rules defined by
Murphy and coworkers [1]. We demonstrated that Syn-
tenyTracker identifies HSBs with high accuracy and is use-
ful for the identification of errors in HSB definition made
during manual annotation. Compared to the AutoGRAPH
synteny block definition tool, SyntenyTracker demon-
strated higher quality of HSB definition in those cases
when proper definition of an HSB was dependent on
simultaneous analysis of several reference and target chro-
mosomes. Also, SyntenyTracker does not define break-
points supported by only one (or two very closely located)
markers because these markers may not represent truly
orthologous anchors between genomes. SyntenyTracker is
thus a powerful tool for multispecies comparative
genome analysis and will have increased utility as more
mammalian genomes are mapped and sequenced.

Availability and requirements
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License: None for usage

Any restrictions to use by non-academics: None

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
RD designed, implemented and tested the algorithm, and
drafted the manuscript. DML and HAL supervised the
work. All authors read and approved the final manuscript.

Additional material

Acknowledgements
We would like to thank Loretta Auvil, Boris Capitanu, Bernie Ács, and 
Michael Welge from the National Center for Supercomputing Applications 
at the University of Illinois for adapting the Evolution Highway comparative 
chromosome browser to visualize SyntenyTracker results. Funding for this 
research was provided in part by the United States Department of Agricul-

Additional file 1
Explanation of HSB definition rules and SyntenyTracker algorithm. 
This file describes the rules for HSB definition implemented in Syn-
tenyTracker, as well as the algorithm SyntenyTracker follows and contains 
supplementary tables and figures illustrating how the algorithm works.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-148-S1.pdf]

Additional file 2
Definition of HSBs on the cattle-human radiation hybrid comparative 
map. Comparison of HSBs defined manually, with SyntenyTracker and 
AutoGRAPH on the cattle-human radiation hybrid map dataset [4].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-148-S2.pdf]

Additional file 3
Definition of HSBs on a set of human and mouse orthologs. Compar-
ison of HSB definitions between SyntenyTracker and AutoGRAPH on a 
set of human and mouse orthologs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-148-S3.pdf]
Page 5 of 6
(page number not for citation purposes)

http://www-app.igb.uiuc.edu/labs/lewin/donthu/Synteny_assign/html/
http://www-app.igb.uiuc.edu/labs/lewin/donthu/Synteny_assign/html/
http://www.biomedcentral.com/content/supplementary/1756-0500-2-148-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-148-S2.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-148-S3.pdf


BMC Research Notes 2009, 2:148 http://www.biomedcentral.com/1756-0500/2/148
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

ture Cooperative State Research Education and Extension service (AG 
2005- 34480-15939).

References
1. Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler

G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C,
Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T,
Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'Brien
SJ, Pevzner PA, Lewin HA: Dynamics of mammalian chromo-
some evolution inferred from multispecies comparative
maps.  Science 2005, 309:613-617.

2. The Broad Institute   [http://www.broad.mit.edu/mammals/]
3. Larkin DM, Everts-van der Wind A, Rebeiz M, Schweitzer PA, Bach-

man S, Green C, Wright CL, Campos EJ, Benson LD, Edwards J, Liu
L, Osoegawa K, Womack JE, de Jong PJ, Lewin HA: A cattle-human
comparative map built with cattle BAC-ends and human
genome sequence.  Genome Res 2003, 13:1966-1972.

4. Everts-van der Wind A, Larkin DM, Green CA, Elliott JS, Olmstead
CA, Chiu R, Schein JE, Marra MA, Womack JE, Lewin HA: A high-
resolution whole-genome cattle-human comparative map
reveals details of mammalian chromosome evolution.  Proc
Natl Acad Sci 2005, 102:18526-18531.

5. Hitte C, Madeoy J, Kirkness EF, Priat C, Lorentzen TD, Senger F, Tho-
mas D, Derrien T, Ramirez C, Scott C, Evanno G, Pullar B, Cadieu E,
Oza V, Lourgant K, Jaffe DB, Tacher S, Dréano S, Berkova N, André
C, Deloukas P, Fraser C, Lindblad-Toh K, Ostrander EA, Galibert F:
Facilitating genome navigation: Survey sequencing and
dense radiation-hybrid gene mapping.  Nat Rev Genet 2005,
6:643-648.

6. Derrien T, André C, Galibert F, Hitte C: AutoGRAPH: An inter-
active web server for automating and visualizing compara-
tive genome maps.  Bioinformatics 2007, 23:498-499.

7. Pevzner P, Tesler G: Genome rearrangements in mammalian
evolution: Lessons from human and mouse genomes.
Genome Res 2003, 13:37-45.

8. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M,
Haussler D, Miller W: Reconstructing contiguous regions of an
ancestral genome.  Genome Res 2006, 16:1557-1565.

9. Amit S, Jaroslaw M: Cinteny: Flexible analysis and visualization
of synteny and genome rearrangements in multiple organ-
isms.  BMC Bioinformatics 2007, 8:82.
Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040707
http://www.broad.mit.edu/mammals/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12902387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12902387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12902387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16339895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17145741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17145741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17145741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12529304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16983148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16983148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17343765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17343765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17343765
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Findings
	Conclusion

	Background
	Methods
	Testing

	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

