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Abstract
Background: Human geneticists are now capable of measuring more than one million DNA sequence
variations from across the human genome. The new challenge is to develop computationally feasible
methods capable of analyzing these data for associations with common human disease, particularly in the
context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear
manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases.
Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive
analysis with MDR is often computationally expensive, particularly for high order interactions. This
challenge has previously been met with parallel computation and expensive hardware. The option we
examine here exploits commodity hardware designed for computer graphics. In modern computers
Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than
Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry
have led to an economy of scale creating a situation where these powerful components are readily
available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on
GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance
ratio of available solutions.

Findings: We found that using MDR on GPUs consistently increased performance per machine over both
a feature rich Java software package and a C++ cluster implementation. The performance of a GPU
workstation running a GPU implementation reduces computation time by a factor of 160 compared to an
8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly
to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU
system provides extremely cost effective performance while leaving the CPU available for other tasks. The
GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf
cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster
system, cost approximately $82,500.

Conclusion: Graphics hardware based computing provides a cost effective means to perform genetic
analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.
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Background
Advances in chip-based genotyping technology have
made routine the measurement of one million DNA
sequence variations. Human geneticists are no longer lim-
ited by the measurement of genetic variations, and instead
are limited by the analysis of these variations. This is espe-
cially true when epistasis is considered. Epistasis is charac-
terized by interaction between variations. In this
situation, variations must be analyzed in the context of
other variations to detect and characterize gene-disease
associations. Epistasis likely forms the genetic basis of
many common human diseases [1]. Multifactor dimen-
sionality reduction (MDR) is an generic algorithm capable
of detecting epistasis, but an exhaustive analysis is combi-
natorial in complexity [2].

Assuming a modern study of one million DNA sequence
variations, there are 5.0 × 1011 possible pairwise interac-
tions. This number grows to 3.3 × 1017 for three-way inter-
actions. Analyses of high order interactions between three
or more genes quickly approach the limits of current tech-
nology. Approaches have been developed which exploit
statistical pre-processing to choose either a subset of DNA
sequence variations to exhaustively evaluate or a subset of
potential interactions to examine [3-8]. Even approaches
examining a small fraction (i.e. 1% of potential interac-
tions) are computationally expensive on datasets of this
size and can benefit from greater performance. Here we
examine whether the modern Graphics Processing Unit
(GPU), a massively parallel hardware platform, provides
performance benefits and cost effectiveness. Advances in
performance will allow researchers to more fully examine
these genome-wide data for the epistatic interactions
believed to underlie common human diseases.

Multifactor Dimensionality Reduction (MDR)
The MDR algorithm, developed by Ritchie et al. [2], is cur-
rently provided in an open source package. The MDR soft-
ware package uses the Java programming language and
features a powerful GUI and a variety of preprocessing,
expert knowledge, and visualization extensions. Here we
compare the performance of the GPU solution against this
software package, as well as against an optimized C++ ver-
sion designed to run on clusters of computers.

The MDR algorithm is conceptually simple. Given a set of
SNPs, a threshold T, and the case-control status P, a new
attribute G is constructed. G is considered low risk if the
ratio of cases to controls given the SNPs is less than T and
high risk if the ratio is greater than T. In this way, the mul-
tidimensional SNP data is captured as a single-dimen-
sional attribute G. The combination of an easy to use
interface and an effective design have led to the use of the
MDR package in a number of studies [7,9]. Here we
develop an implementation of MDR capable of running

on graphics processing units (GPUs) using the NVIDIA
Compute Unified Device Architecture (CUDA) frame-
work.

The Graphics Processing Unit
In modern computers capable of running graphics inten-
sive applications, the memory bandwidth available to
GPUs is far greater than to other components. High per-
formance graphics cards, such as NVIDIA Corporation's
GTX 280 that we use here, have more than 10 times as
much memory bandwidth available to them as modern
CPUs [10,11]. The GPU's order of magnitude advantage
in memory bandwidth greatly increases performance for
large datasets.

On a typical consumer computer system, video games or
other applications using 3D graphics are the most data-
intensive applications. A single screen can contain mil-
lions or billions of triangles that need to be processed
with lighting constants and shape deformations and then
displayed on the screen. Recently game developers have
released games with sophisticated graphics [12,13], which
are driving improvement in GPU technology. The photo-
realistic details demanded by the consumer market have
forced GPU manufacturers to develop faster hardware.
GPU manufacturers now run code in parallel across mul-
tiple cores, thus increasing the speed with which the over-
all jobs complete. NVIDIA GTX 280 has 240 processors
[10], each doing its own work, which run in parallel and
greatly enhance rendering performance.

Many tasks can benefit from parallel execution through
the large number of cores available [14-16]. The parallel
architecture provides more flexibility in the rendering
pipeline, offloading work of graphics design to game pro-
ducers. Coincidentally, this flexibility also enables appli-
cations other than games to exploit GPUs. Their
architecture, speed, and low price make GPUs a viable
alternative for high performance computation.

While GPUs are very efficient for many scientific applica-
tions, they are not well suited for all tasks. GPUs provide
data level parallelism, so they work well for parallelizing
tasks which depend on applying a small number of steps
to a large amount of data. When algorithms depend on
applying many interdependent operations to small
amounts of data the GPU is unlikely to greatly increase
performance. MDR can be implemented in an iterative
fashion that allows for efficient execution on GPUs.

Findings
MDR on GPUs performs better on lower cost hardware
than MDR on CPUs. We find that a single GPU is capable
of outperforming an eight CPU core workstation running
a Java version by a factor of approximately 60 and that its
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performance falls between that of a 32 core and 80 core
CPU cluster running a C++ implementation. A GPU work-
station containing three GPUs is capable of performance
equal to approximately 150 clustered CPU cores running
a C++ version and it outperforms the Java version running
on an eight core workstation by a factor of 160.

Performance Results
We specifically compare MDR on GPUs to two other
frameworks. Performance results are shown in Table 1.
First, we compare the performance to the fully featured
user friendly GUI version implemented in Java running
on a single machine. This situation represents how many
researchers approach an MDR analysis when the infra-
structure of a computing cluster is unavailable. We exam-
ine the performance given two different configurations,
an 8-core workstation (with eight Xeon X5472 cores at 3.0
Ghz) with 64 GB of RAM and a 4-core workstation (with
four Xeon X5365 cores at 3.0 Ghz) with 4 GB of RAM. Our
simulated benchmark dataset contains 1600 individuals
and 1000 SNPs. This dataset is similar to what would be
seen in a modestly sized study. On this test dataset, the
11741.932 seconds taken by our highest end eight core
workstation running the Java version is 160 times longer
than the 72.633 seconds taken on average by the three
GPU implementation. The time taken by two GPUs is
102.250 seconds, about three halves of the time for three
GPUs and still far below the time taken by the Java version
on the highest end workstation. Even using just one GPU,
where the time increases to 199.260 seconds, the GPU
workstation outperforms the eight core workstation by
more than a factor of 60. The GPU implementation of the
MDR algorithm greatly and consistently outperforms the
CPU Java implementation on both four and eight core
workstations. As Java sacrifices speed for portability, this
speed increase is not unexpected, but it is still informative

because most users perform these analyses on a single
workstation.

Second we compare the performance on GPUs to a C++
version of MDR running on a Beowulf cluster of comput-
ers. We compare our GPU benchmarks to results obtained
using 4, 16, 32, 80, or 150 cores on a cluster. These results
are shown in Table 1. A workstation using a single GPU
outperforms 32 cores on the cluster and underperforms
80 cores on the cluster. A workstation using three GPUs
performs similarly to 150 cores on the cluster. This com-
parison is important because some users are interested in
high performance computing but do not have access to or
infrastructure for a cluster of compute nodes. Here we
show that a single workstation can perform an amount of
work similar to a reasonably sized cluster [see Figure 1].

Cost
Not only is the GPU solution faster than using standard
CPUs, but it is also less expensive. The three GPU worksta-
tion [see Additional File 1] costs approximately $2200.
The GPU implementation is not CPU bound and thus an
inexpensive CPU can be used. This compares very favora-
bly to the 4-core workstation, which costs about $5000,
and the 8-core workstation, which costs about $13750.
The cost of 150 cores on the Beowulf cluster, including
infrastructure and support, is approximately $82,500,
which provides performance similar to that obtained with
three GPUs. The GPU workstation only requires infra-
structure and support similar to a standard workstation.
The researchers included in their GPU workstation the
option of upgrading to four GPUs, but if this possibility is
not considered, then the cost can be lowered to $1700
[see Additional File 2]. The price to performance ratio,
shown in Table 2, thus exceeds 1000:1 when the GPU
implementation replaces multi-core CPUs directly. Per-
formance of the GPU approach can be increased by add-

Table 1: Execution Time

Data set size Host Time 1 Time 2 Time 3 Avg time Std. dev time

1600 × 1000 3 GPU 72.639 72.649 72.611 72.633 0.016
1600 × 1000 2 GPU 102.243 102.228 102.276 102.249 0.020
1600 × 1000 1 GPU 193.319 193.243 193.207 193.256 0.047

1600 × 1000 8 core (Java) 11676.730 13782.761 9766.305 11741.932 1640.359
1600 × 1000 4 core (Java) 18656.208 19251.764 14188.972 17365.648 2259.369

1600 × 1000 4 core (C++; cluster) 2664.016 2198.369 2306.662 2389.682 198.957
1600 × 1000 16 core (C++; cluster) 669.783 668.732 660.090 666.202 4.343
1600 × 1000 32 core (C++; cluster) 335.186 301.622 359.725 332.178 23.816
1600 × 1000 80 core (C++; cluster) 129.589 129.171 129.815 129.525 0.267
1600 × 1000 150 core (C++; cluster) 67.660 69.814 69.938 69.137 1.046

The execution times of various hosts calculating all three-way interactions of a particular data set. The times are all as reported by the Unix 
time(1) command.
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ing more GPUs to each workstation or with additional
GPU machines in a cluster environment, although this
approach decreases some of the infrastructure benefits.

Conclusion
The implementation and analysis of MDR on GPUs has
shown that general purpose GPU computing is well suited
to MDR and other algorithms which rely on processing
large amounts of mutually independent data. Consumer
demand for very high performance graphics hardware has

lowered the cost of high-performance GPU systems for
scientific research to a level far below the cost of similar
performance CPU systems. Researchers performing epista-
sis analysis using MDR should examine their require-
ments and determine whether CPUs or GPUs provide a
more appropriate framework for analysis. Individuals per-
forming analysis of large datasets or permutation testing
would benefit most from a GPU machine or set of
machines.

Methods
Libraries and Dependencies
The MDR implementation on GPUs [17] is based around
the NVIDIA CUDA framework [18] and Python program-
ming language [19], with a binding called PyCUDA [20].
This model, along with the pp library for parallel execu-
tion [21], allows for distributed, networked, high-per-
formance clusters of GPUs that can simultaneously
perform a single task. The Numpy library [22] is used for
efficient manipulation of the data arrays.

GPU Implementation
In order to understand the details of the GPU implemen-
tation of MDR algorithm, one must first understand the
GPU execution model. The current (8x00 series and
above) NVIDIA GPU is best modeled as, "a set of SIMD
execution units with high bandwidth shared memory and
a tiered execution hierarchy" [23]. The basic unit of execu-
tion is the kernel, which is a block of code which is exe-

Execution time comparisonFigure 1
Execution time comparison. A comparison of the execution times of three-way detection in a 1600 × 1000 data set for 
GPU and cluster MDR platforms. The Java implementation running on workstations is not included because it performs rela-
tively poorly and inclusion makes distinguishing the performance of the GPU and cluster implementations difficult.
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Table 2: Server cost and price to performance ratio

Solution Cost Average time Price to performance

8-core CPU 13750 11742.000 1.0000
4-core CPU 5000 17366.000 1.8594

4 core cluster 2200 2389.700 30.710
16 core cluster 8800 666.200 27.540
32 core cluster 17600 332.180 27.616
80 core cluster 44000 129.530 28.328
150 core cluster 82500 69.137 28.306

1 GPU 970.94 193.260 860.42
2 GPU 1320.93 102.250 1195.4
3 GPU 1670.92 72.633 1330.3

This is a comparison between the different solutions, taking into 
account their cost and scaled for the price to performance ratio of 
the 8-core server running Java. The cluster costs derive from a base 
cost of $4400 for an eight core node.
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cuted by a group of threads in parallel. The block and grid
constructions easily support multiple level parallelism.
The GPU implementation of MDR uses this tiered execu-
tion architecture to its advantage by running a number of
threads in parallel.

Each block in the GPU implementation is responsible for
running a single triplet (or pair in the two-way implemen-
tation) of columns. The threads in the block work in par-
allel using the bucket method similar to that described in
[24] to quickly determine the accuracy on a per column
basis. The grid is responsible for running these column
accuracy calculations and additionally runs a reduction
which finds the best solution. Once the structure of the
block and thread hierarchy has been defined, the MDR
algorithm must be considered. As stated above, the main
steps that the MDR algorithm follows are:

1. Across every set of two (or three, ...) genotype
attributes selected, sum the case/control statuses
present for each combination of attributes. This step is
called "bucketing."

2. Determine an estimated status marker for each
bucket by labeling the bucket as high risk if it contains
more cases than expected based on the proportion of
cases in the dataset and low risk otherwise.

3. Find the balanced accuracy of all the buckets by
looping over every genotype's subjects again and find-
ing the sensitivity and specificity of the estimated sta-
tus markers calculated above. The arithmetic mean of
the sensitivity and specificity is called the balanced
accuracy.

4. Find the genotype combination with the highest
balanced accuracy. This genotype combination is the
one most predictive of the case/control status of indi-
viduals in the dataset.

Next, each step must be broken down into dependencies.
For example, the accuracy calculation first needs to have
an estimated status marker calculation, which in turn
depends on the initial bucketing but no information must
be accessed outside of a single combination of genotypes.
If arrays need to be shared between threads, the CUDA
memory architecture should be exploited to either use
constant memory (if the arrays do not change) or shared
memory (if they do).

One of the main difficulties with writing CUDA code is
organizing the memory to maintain high resource utiliza-
tion and efficiency. There are four main memory spaces
the authors used to accomplish this goal: constant mem-
ory, global memory, shared memory, and registers. Tex-

ture memory and local memory were evaluated as well for
storing genotype data, but they were found to slow down
computation.

Constant memory, as its name implies, stores constants –
values which cannot be changed by kernels running on
the GPU. This makes them limited to lookup tables and
similar data structures. In the GPU implementation of
MDR, they are used to store the phenotypes of all the indi-
viduals. Because constant memory is cached and local-
ized, phenotypes are accessed in linear order to ensure
spatial locality and cache coherency.

Global memory is the actual RAM which resides on the
graphics card, attached via the printed circuit board to the
GPU itself. It is slow, but if used correctly can still yield
acceptable results. The implementation holds the geno-
type array directly in global memory. Since only two
lookups are used per attribute per run, the overhead is
minimal. The authors tried other solutions, such as cach-
ing global memory in shared memory or using the afore-
mentioned texture memory, but none of these were as fast
in a variety of situations as the pure global reads. It should
be noted that the authors run on the GTX 200 architec-
ture, which supports limited autocoalescing of global
reads.

Shared memory is a small RAM buffer (16 K) which can
be accessed by all threads within a block. It has a variety
of uses (caching, intermediate results, ...), and many of
these are used extensively. Most importantly, the parallel
reductions which are prevalent in the program design and
the buckets which form the main storage component of
the program both act on and reside in shared memory.

Registers are storage locations which are thread-local, so
only a single thread in a block can access their value and
they are unique across threads. This makes registers criti-
cal for keeping track of which values an individual thread
should compute and also for storing results of global
reads.

Finally, it is important to note that Python has a number
of restrictions which relate to running code in parallel
(actually executing two pieces of code simultaneously).
Most limiting is the Global Interpreter Lock [25], in which
limits access to I/O resources to only one thread at a time.
Practically, this means that only one instance of PyCUDA
can run in each Python instance, so only one GPU can be
utilized per execution, even though the GPU implementa-
tion does not tax the CPU. While there are ways around
this single-active-GPU-per-process limitation (by saving
and restoring PyCUDA contexts [26]), the better solution
is to use an external library to run two Python instances at
the same time from the same file. We chose to use the pp
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library for parallel Python execution [21], as it allows for
seamless parallel execution not only across cores but also
across machines. It would be simple to add any new work-
stations purchased to the list of servers and enable execu-
tion across all of the machines simultaneously.
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Additional File 1
3 GPU Server sample BOM. This is a sample bill of materials for a GPU 
Server which can handle up to three GPUs. Cost is estimated. Almost 
identical performance should be achieved for much lower overall cost due 
to only using the components necessary for running three GPUs, not four.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-149-S1.pdf]

Additional File 2
Upgradeable 3 GPU Server sample BOM. This is the bill of materials 
for our GPU Server which can handle up to four GPUs (if an additional 
power supply is added or the Thermaltake Toughpower 1500 W 230 V 
power supply is used) and is configured with three GPUs. Cost is estimated 
based on prices from February 2009.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-149-S2.pdf]
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