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Abstract

Background: Jenynsia onca, commonly known as the one sided livebearer, is a member of the
family Anablepidae. The opsin gene repertoires of J. onca's close relatives, the four-eyed fish
(Anableps anableps) and the guppy (Poecilia reticulata), have been characterized and each found to
include one unique LWS opsin. Currently, the relationship among LWS paralogs and orthologs in
these species are unclear, making it difficult to test the hypotheses that link vision to morphology
or life history traits. The phylogenetic signal appears to have been disrupted by gene conversion.
Here we have sequenced the opsin genes of J. onca in order to resolve these relationships.

Findings: We identified nine visual opsins; LWS S180r, LWS S180, LWS P180, SWSI, SWS2A,
SWS2B, RHI, RH2-1, and RH2-2. Key site analysis revealed only one unique haplotype, RH2-2,
although this is unlikely to shift A, significantly. LWS P180 was found to be a product of a gene
conversion event with LWS S180, followed by convergence to a proline residue at the 180 site.

Conclusion: Jenynsia onca has at least 9 visual opsins: three LWS, one RHI, two RH2, one SWSI
and two SWS2. The presence of LWS P180 moves the location of the LWS P180-S180 tandem
duplication event back to the base of the Poeciliidae-Anablepidae clade, expanding the number of
species possessing this unusual blue shifted LWS opsin. The presence of the LWS P180 gene also
confirms that gene conversion events have homogenized opsin paralogs in fish, just as they have in
humans.

Background

Jenynsia is the sister group to the genus Anableps, together
they form the subfamily Anablepinae; the genus Ouxyzy-
gonectes is the sister group of the subfamily Anablepinae
and jointly they form the family Anablepidae. The genus
Jenynsia is comprised of thirteen species [1]. Jenynsia onca
is distributed in freshwater lakes and rivers throughout
southern Brazil [1]. J. onca is a pelagic freshwater fish,
whose eyes are morphologically normal in appearance,
unlike A. anableps a member of it's sister genus [2]. Distin-
guishing features of a male J. onca include a tubular

unscaled gonopodium, which is either dextral or sinistral.
Females of this species correspondingly have either a dex-
tral or sinistral genital opening and mate only with com-
plementary sided males. Additionally, J. onca has dark
circular spots on the ventral portion of the flank [1,2].
Here we have used PCR to characterize the opsin genes of
this species.

Vision is an interesting and dynamic sensory modality,
particularly in teleost fish, a group which possess some of
the greatest morphological and habitat diversity of any
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animal group. The first step of vision is light absorption,
which occurs via opsins expressed in the rods and cones.
There are five sub families of vertebrate opsins each with
their maximal absorption (A,,) focused on a different
area of the visual spectrum [3]: RH1 a rod specific class
(490500 nm), LWS a long-wave sensitive class (490570
nm), RH2 a middle-wave sensitive class (480533 nm),
SWS1 and SWS2 short-wave sensitive classes (355440 nm
and 410490 nm respectively) [4]. Within these five classes
of conserved opsin proteins, there are variable amino acid
residues that give each opsin its unique spectral sensitivity
[4-10]. These residues are termed key sites, they are often
found at positions in which contact is made with the
chromophore, and each has a disproportionate effect on
the A, [5,11].

Opsin repertoires in fish are particularly interesting due to
the extensive pattern of opsin gene duplication and diver-
gence found throughout teleostei. Furthermore, the
expanded repertoire is often correlated to differential
expression, both spatially across the retina and develop-
mentally over time. For example, in zebrafish (Danio rerio)
it has been demonstrated that LWS duplicates localize dif-
ferentially across the topology of the retina, and that this
pattern of expression also changes during development
[12]. This has been hypothesized to be a response to the
heterogeneous environment the fish live in, with spectral
properties differing between the light that hits the dorsal
region of the retina and that which hits the ventral region.
Another example of differential expression is in cichlids,
in this system a subset of the available opsin repertoire is
used by each particular species to tune sensitivity in a hab-
itat dependent way [13]. The first step to characterizing
these fascinating expressional patterns is through the elu-
cidation of the opsin repertoire itself.

Particularly interesting are the opsin repertoires of the
livebearers; ongoing studies of opsin gene duplication
and divergence in guppies (Poecilia reticulata) and the
four-eyed fish (Anableps anableps) have shown that both
species have an expanded LWS repertoire. Both species
have recent species-specific duplicates and a repertoire of
ten visual opsins [14-16]. Interestingly both also have
remarkable morphology, in the case of the guppy this is a
variable male pigmentation pattern, while A. anableps
have unusual four-eyed morphology. Based on its phylo-
genetic position, J. onca functions as a useful out-group for
comparison of opsin repertoire, particularly between A.
anableps and the Poeciliids [17]. Out-groups are used to
identify synapomorphies (shared derived characters) and
can indicate whether one apomorphic trait evolved before
another. Here our goal is to determine whether or not par-
ticular opsin genes and gene sequences are associated with
coloration in guppies and the four-eye morphology in A.
anableps.

http://www.biomedcentral.com/1756-0500/2/159

Results and Discussion

PCR screening using gene specific primers (Table 1) iden-
tified nine visual opsins: LWS S180r, LWS S180, LWS
P180, SWS1, SWS2A, SWS2B, RH1, RH2-1, & RH2-2. All
opsins except LWS S180r and S180 are expressed, having
been amplified from eye cDNA derived from one adult
male and one adult female J. onca. LWS S180r and S180
opsins were amplified only from genomic DNA. However
the reason that LWS S180 and S180r could not be
retrieved from cDNA could be attributed to life stage, as
only adults were used in this study. A particularly interest-
ing finding in this repertoire was the LWS P180 opsin, as
it's presence moves the point of LWS duplication farther
back within the Cyprinodontiformes order. We did not
find any species-specific gene duplication events in J. onca.

The J. onca opsins were aligned to orthologous sequences
from other fish species. Sequences in the alignment were
573 to 930 base pairs (bp) long. We used PAUP* 4.0B10
to calculate genetic distances based on the modeltest best-
fit model of sequence evolution and to reconstruct Neigh-
bour joining (NJ) (Figure 1) and Maximum likelihood
(ML) (see Additional file 1) trees [18-21]. Sequences from
each opsin subfamily formed well-supported mono-
phyletic groups, with bootstrap support > 97% (1000 rep-
licates) [22].

The phylogenetic analysis indicated that gene identity was
consistent with regard to both the subfamily that the
genes fell into and species taxonomy. The LWS subfamily
can be further grouped into haplotype clades, however, J.
onca LWS §180 and LWS P180 did not fall out on the tree
where they would be predicted to based on haplotype
identity (Figure 1). LWS P180 was found to be highly sim-
ilar to A. anableps LWS S180y and Poeciliidae LWS P180
only over its 3' end (Figure 2). When only the 3' region of
these two genes and the Poeciliidae LWS are used in phy-
logenetic analysis two distinct clades with 60% bootstrap
are observed separating LWS S180 from LWS P180
(including A. anableps LWS S180y) (Figure 3).

We hypothesize that two recent gene conversion events
explain the observed pattern. One event would have
occurred between the two J. onca genes, from LWS S180 to
LWS P180 leaving only the original 3' end of LWS P180,
masking the true orthologous relationship. This conver-
sion event in J. onca also explains why the sequence sur-
rounding the proline at amino acid postion 180, which
occurs before the 3' end, is very similar to the J. onca LWS
S$180. Indeed, based on the pattern of similarity it seems
likely that the P180 substitution occurred independently
in the Anablepid lineage. The second conversion event we
suggest occurred recently in the A. anableps LWS S180y,
with the majority of the 5' region of this gene having been
over-written by LWS S180a. This event explains the
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Table I: Primers used for J. onca cDNA and genomic PCR.

Opsin category Primer Name

Sequence

SWSI SWSIFwl 5'-AACTACATCYTGGTMAACATCTCC-3'
SWSIRev2 5'-GAACTGTTTGTTCATGAAGGCG-3'

SWS2 SWS2Fwl 5'-GYACWATTCAATACAAGAARC-3'
SWS2Rev2 5-TCTCWGCCTTCTGGGTKGAGGC-3'
SWS2AFwI 5'-GTCCACCCGAGTCATAGAGC-3'
SWS2ARev2 5'-GCCCACGGTTGTTGACAAC-3'

RH2 RH2Fwl 5'-AACTTCTAYATCCCGWTGTCC-3'
RH2RevI 5'-AGCATGCAGTTACGGACTG-3'
RH2-2Fw| 5'-CAACAGGACGGGCTGGTGAGG-3'
RH2-2Rev3 5'-ACCCATTCCAATTGTTGCC-3'

RHI RHIFw2 5'-GGAGTCCTTATGAATATCCTCAG-3'
RHIRev2 5'-CCTGTTGCTCCATTTATGCAGG-3'

LWS Fw100 5'-GATCCCTTTGAAGGACCAAACT-3'
Fwla 5-TCTTATCAGTCTTCACCAACGG-3'
RevEnd 5'-TTATGCAGGAGCCACAGAGG-3'
Rev8 5'-GCCCACCTGTCGGTTCATGAAG-3'

grouping of LWS S180y with Poeciliid LWS P180 in the 3'
phylogenetic tree (Figure 3) and why LWS S180a and LWS
S$180y are nearly identical until the last portion of the 3'
end. This conversion event also clarifies why the A. ana-
bleps LWS S180y does not have a proline at the 180 amino
acid site. Our hypothesis that gene conversion has influ-
enced sequence variation among opsin paralogs is sup-
ported by an analysis using GENECONV 1.81A, which
detects sequence pairs that have abnormally long contin-
uous regions of high sequence similarity found within
regions of lower similarity overall [23,24]. GENECONV
detected a gene conversion event between LWS S180 and
LWS P180/S180y in A. anableps from the beginning of the
sequence to 629 bp (p = 0.012) and in J. onca from the
start of the sequence to 567 bp (p = 0.036), which corre-
spond to our predicted conversion events.

The only alternative explanation for this pattern of evolu-
tion would be convergent evolution of this 3' region (Fig-
ure 2), however given the previous observations of gene

conversion in opsins it is not the most likely explanation.
Homogenized key site haplotypes have been observed not
only in fish, such as the guppy where the LWS A180 is a
product of duplication followed by partial gene conver-
sion, but also in humans where conversion events are
often detrimental [14,25,26]. The conversion events we
propose in livebearers may have been facilitated between
LWS P180 and LWS S180 due to their position as tandem
inverted duplicates, something that has been confirmed
in both Poecilia and Xiphophorous [14].

As mentioned above, there are key sites within each opsin
subclass, which may be used to estimate the opsin A ..
We investigated the key site haplotypes of these nine
opsins and based on the LWS haplotypes we have esti-
mated the LWS A, values [27] [see Additional file 2]. The
key site substitutions seen in the LWS P180 although
found in other species, confer a significant change in A,/
the serine to proline substitution alone results in a -19 nm
shift [28]. Only one key site substitution is not seen in J.
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Phylogenetic analysis of Jenynsia onca opsins. A neighbour-joining bootstrap tree, which uses opsin coding sequence
from J. onca and relatives. The percentage of trees in which the associated taxa clustered together in the bootstrap test (1000
replicates) is reported at the nodes. PAUP* 4.0B 10 was used to estimate genetic distances, based on modeltest's best-fit model
of evolution, and complete phylogenetic analysis [18,19] [accession numbers see Additional file 3]. All codon positions were
included. Pair-wise deletion was used in the case of missing nucleotides for the analysis.
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Figure 2

Sequence alignment of conserved LWS P 180 sequence. A sequence alignment of the conserved 100 base pair portion
(nucleotide 758 857) of the J. onca LWS P180 and A. anableps LWS S180y with comparisons to Poeciliid LWS. Highlighted is
the J. onca S180, which exemplifies the shared difference of the J. onca LWS P180, Poeciliid LWS P180 and A. anableps LWS
S180y. Accession numbers for these sequences are listed in Additional file 3.

onca's relatives; RH2-2 deviates from the isoleucine con-
sensus residue to a valine residue in amino acid site 65
(based on human LWS amino acid numbering [29]),
although this would likely not significantly shift the A,
[8]. The most interesting point to glean from the haplo-
type comparison is that despite significant nucleotide
divergence between J. onca and its relatives there is a large
degree of amino acid conservation at key sites between
orthologs.

Conclusion

Jenynsia onca has nine visual opsins: three LWS, one RH1,
two RH2, one SWS1 and two SWS2. Despite nucleotide
level divergence between related orthologs it appears
there is significant phenotypic (X,,,,) conservation with
only one instance of amino acid key site residue substitu-
tion. J. onca in the future could help us identify differences
in opsin expression that are associated with the unusual
eyes of A. anableps and with the remarkable coloration of
guppies by acting as an out-group.

Methods

PCR primers were designed to amplify nine opsins from
the five visual opsins subfamilies (Table 1). These primers
were complementary to regions in each opsin gene or sub-
family that were conserved in guppies (Poecilia reticulata),
and A. anableps. Two primer pairs were engaged for each
gene.

Each primer pair was used to survey cDNA or genomic
DNA in PCR reactions using Bio-Rad iProof high-fidelity
DNA polymerase in an Eppendorf™ Mastercycler® EP Grad
S thermocycler using the following conditions: Initial
denaturation at 98°C for 30 s, 35 cycles with denaturation
at 98°C for 5 s, annealing at 55 65°C (in 5°C intervals)
for 12 s, extension at 72°C for 25 s and a final extension
at 72°C for 5 min, additional primers (1 pl at 10 mM)
were added, at the beginning of the last PCR cycle to pre-
vent heteroduplex formation.

Amplicons of the predicted size were excised using
QIAquick® Gel Extraction Kit or purified using QIAquick®
PCR Purification Kit. Purified products were A-tailed
using Invitrogen™ Taq polymerase and cloned using the
Promega® pGEM™ T Easy Vector System II kit. Clones con-
taining inserts of the correct size were sequenced using
labelled M13 forward and reverse primers and a Licor
sequencer at the University of Victoria Centre for Biomed-
ical Research.

Live J. onca were obtained from a commercial supplier
(The Afishionados, Winnipeg, Manitoba, Canada). Two
adult J. onca (one male and one female) were euthanized
in buffered MS222. Total RNA was isolated from the eyes
using Aurum™ Total RNA Fatty and Fibrous Tissue Pack,
immediately after euthanasia and enucleation cDNA was
synthesized using BioRad® iScript Select cDNA Synthesis
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Figure 3

Phylogenetic analysis of shared 3' LWS P180
sequence. A neighbour-joining bootstrap consensus tree of
a 243 base pair portion of 3' LWS S180 and LWS P180 opsins
from J. onca and relatives. The percentage of trees in which
the associated taxa clustered together in the bootstrap test
(500 replicates) is reported at the nodes. The Jukes-Cantor
algorithm was used and all codon positions were included
[31]. Pair-wise deletion was used in the case of missing nucle-
otides for the analysis. Phylogenetic analyses used MEGA4
[30] [accession numbers see Additional file 3].

Kit from total RNA. DNA was isolated from the fish car-
cass using QIAquick® DNeasy Blood & Tissue Kit.

Two phylogenetic trees were reconstructed for the com-
plete set of opsin sequences. The partial coding sequence
tree included sequences from Jenynsia onca, Anableps ana-
bleps, Poecilia reticulata, Xiphophorus pygmaeus, Lucania goo-
dei, Oryzias latipes and Danio rerio, Poecilia picta, Poecilia
parae, Poecilia bifurca and Tomeurus gracilis sequence files
used were 412 to 819 bp long. The second tree was based
on 243 bp of LWS 3' coding sequence from J. onca, A. ana-
bleps, P. reticulata, X. pygmaeus, P. picta, P. parae, P. bifurca
and T. gracilis [Accession numbers see Additional file 3].
The aligned sequences for the partial coding sequence
phylogenetic tree were first used to obtain the best-fit
model of evolution using Modeltest [19]. The phyloge-
netic reconstruction was done using ML and NJ (1000
bootstrap reanalyses) in PAUP* 4.8B10 and utilized the
optimal model parameters [18,20-22]. The root of the
partial coding sequence tree was positioned along the
branch separating the LWS opsins from all others [30].
The 3' coding tree was constructed using MEGA4 using the
Jukes-Cantor algorithm, NJ, and support for nodes were
estimated using 500 bootstrap reanalyses [20,22,31,32].
Pair-wise deletion was used in the case of missing nucle-
otides for the analysis.

http://www.biomedcentral.com/1756-0500/2/159

Gene conversion detection was undertaken using GENE-
CONV version 1.81A [23]. We used the program's default
values with the exception of gscale, which we set to 2. The
input for analysis was a coding sequence nucleotide align-
ment containing A. anableps LWS S180a and LWS S180y
as well as J. onca, X. pygmaeus, P. picta, P. parae, P. reticu-
lata, and P. bifurca LWS S180 and LWS P180.
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