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Abstract
Background: Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid
(TCA) cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate
or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α
(HIF-1α) prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is
frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA,
SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH
and FH expression in breast carcinomas.

Findings: No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC,
SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-
sensitive high resolution melting which detects both homogeneous and heterogeneous
methylation.

Conclusion: These results show that inactivation via DNA methylation of the promoter CpG
islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.

Introduction
The hypoxia-inducible factor (HIF-1) transcription factor
plays a pivotal role in breast tumour progression [1-4] by
activating genes involved in angiogenesis, cell prolifera-
tion and survival [1,2,5]. Levels of HIF-1 α subunits (HIF-
1α) are tightly regulated with rapid degradation via
hydroxylation by prolyl hydroxylases (PHDs) 1, 2 and 3
and proteasomal degradation by the von Hippel-Lindau
(VHL) protein [1]. Increased levels of fumarate and succi-
nate inhibit PHD activity via product inhibition as well as
by direct inhibition by competing with α-ketoglutarate at
the PHD α-ketoglutarate binding site [6-8]. Thus any

mechanism whereby the level of succinate dehydrogenase
(SDH) or fumarate hydratase (FH) is reduced may result
in tumorigenesis [9,10]. Indeed, the SDH and FH genes
have been demonstrated to be tumour suppressor genes
(TSG) via this pseudohypoxic drive in paraganglioma
[11], hereditary leiomyomatosis and renal cell carcinomas
[7]. In view of this potential mechanism to enhance HIF-
1α levels and in view of the association of HIF-1α levels
with breast cancer prognosis and resistance to treatment,
we hypothesised that epigenetic silencing by promoter
methylation for the SDH and FH genes may be a mecha-
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nism underlying upregulated HIF-1 in a proportion of
breast carcinomas.

Materials and methods
DNA samples
DNA was obtained from 72 invasive breast carcinomas
from the John Radcliffe Hospital, Oxford, UK (Ethics

committee approval: JR C02.216) and from the following
cancer cell lines: breast: MCF10A, MCF7, BT20, SkBr3,
Hs578T, T47D, MDA-MB 153, MDA-MB 468, MDA-MB
453, MDA-MB 231; colorectal: Colo205, HCT116,
SW948, SW48; leukaemia: HL60, KG1, RPMI8226, CCRF-
CEM; ovarian: 2008; neuroblastoma: SK-N-SH, SH-SY5Y,
Be(2)c, IMR32; and prostate: PC3.

SDHB bisulfite modified promoter sequence with primers indicatedFigure 1
SDHB bisulfite modified promoter sequence with primers indicated. SDHB MS-HRM (1) primer sequences are shown 
in boxes and SDHB MS-HRM (2) primers are underlined. SDHB MSP primer sequences are shaded in grey. CpG dinucleotides 
are in bold. The number in parentheses on the left is the nucleotide position relative to the starting codon ATG (shaded in 
black).

Table 1: Primer sequences, annealing temperature and amplicon information for the MS-HRM assays.

Gene Primer Sequences
5' - 3'

Annealing 
temperature 

(°C)

Amplified region 
(GenBank accession and 

nucleotide numbers)

Screened 
CpGs/

amplicon 
size (bp)

SDHA F - CGGGGTTTTAAAAATGTTGGTGTT 61 AC021087.5: 218153-218484 39/332
R - CGAACCCCCGACATATCTACTATTACC

SDHB 1 F - CGGGGGAAGTTAAATGGGTATG 60 AL049569.13: 17380588-17380744 14/157
R - CGCCCAACCTACATCCACTAAA

SDHB 2 F - GCGGTTAGTGGGTTTTTAGTGGAT 65 AL049569.13: 17380446-17380623 16/178
R - CAAACAAACTCCGCCAAAAATTATAACC

SDHC F - TCGTTATATGATATTTTTAATTTCGATTTTTAGT 56 AL592295.25: 161284096-161284197 8/102
R - ATCTTAAATTCCGATCTAAACGAAAATAAC

SDHD F - CGGGTTGGTGGATGATTTTGAG 62 AP002007.4: 111957596-111957689 4/94
R - CCTCACCTCGACCTCCTAAAACAC

FH F - TTTGTTTTATTTGTCGGTGTGAGGT 60 AL591898.1: 241683032-241683154 7/123
R - AAAACTTAAATAAAATTTCTAAACGACTATAACCAC
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SDH and FH MS-HRM in breast cancer cell linesFigure 2
SDH and FH MS-HRM in breast cancer cell lines. In MS-HRM, PCR products undergo melting analysis after PCR amplifi-
cation. Different amplicons have different melting behaviours according to their methylation status. Unmethylated samples melt 
earlier than methylated samples as they have unmethylated cytosines replaced by thymines in the sequence. Controls for 100%, 
25%, 5% methylation and WGA are shown. Levels of methylation as low as 5% can be readily seen. The cell lines shown here, 
MCF7 and T47D showed no methylation of the four SDH subunits and FH. A. SDHA; B. SDHB; C. SDHC; D. SDHD; and E. FH 
methylation. The curve for each sample represents the mean value of duplicate samples.
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SDH and FH MS-HRM in breast carcinoma samplesFigure 3
SDH and FH MS-HRM in breast carcinoma samples. All the breast carcinoma samples showed no methylation. Three 
representative cancers are shown. The curve for each sample represents the mean value of duplicate samples.
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Bisulfite modification
DNA from samples were bisulfite modified as described
previously [12]. CpGenome™ Universal Methylated DNA
(Chemicon/Millipore, Billerica, MA) and DNA from
peripheral blood mononuclear cells were used as the
methylated and unmethylated controls, respectively.
Standards (5, 10, 25 and 50% methylation) were gener-
ated by diluting Universal Methylated DNA in the
unmethylated DNA. Whole-genome amplification
(WGA) DNA was used as an alternative unmethylated
control [12].

Methylation-sensitive high resolution melting (MS-HRM) 
and methylation-specific PCR (MSP)
Methylation-sensitive high resolution melting (MS-HRM)
was performed on bisulfite modified DNA [13]. MS-HRM
primer sequences and optimal annealing temperatures are
listed in Table 1. Bisulfite modified fully methylated,
peripheral blood DNA, WGA DNA, different methylation
percentage standards and no template controls were used
in each run as controls and standards. Assays were per-
formed in duplicate.

Methylation-specific PCR primer sequences and PCR con-
ditions of SDHB methylation were described previously in
[14]. The positions of the SDHB MS-HRM and MSP
primer sequences in the SDHB promoter sequence are
shown in Figure 1.

Results
Methylation of SDHA, SDHB, SDHC, SDHD and FH in cell 
lines and tumours
CpG islands were identified in the promoter region of
SDHA, SDHB, SDHC, SDHD and FH demonstrating the
potential for alteration of their gene expression by meth-
ylation. MS-HRM primers were designed to cover CpG
rich areas of the proximal promoter region for each gene.
However, methylation was not observed for any of the 5
genes in any of the 10 cell lines tested (Figure 2) or in any
of the 72 invasive breast carcinomas (Figure 3).

The absence of detectable methylation was not due to
technical reasons such as absence of breast cancer mate-
rial. MS-HRM assays for two genes known to be methyl-
ated in a large proportion of breast cancers were used as

RASSF1A and MAL MS-HRM of breast carcinoma samplesFigure 4
RASSF1A and MAL MS-HRM of breast carcinoma samples. A. RASSF1A MS-HRM demonstrates generally homogeneous 
methylation in the breast carcinoma samples at different percentages of methylation ranging from 10 to 50% methylation. B. 
Both homogeneous (the sharp peak seen for sample 5) and heterogeneous methylation (the more complex melting profiles 
across both unmethylated and methylated peaks seen in the other samples) can be observed for MAL.

Table 2: RASSF1A and MAL methylation frequencies in the breast carcinoma samples as determined by MS-HRM

RASSF1A Positive RASSF1A Negative Total

MAL Positive 28 (38.9%) 2 (2.8%) 30 (41.7%)
MAL Negative 32 (44.4%) 10 (13.9%) 42 (58.3%)

Total 60 (83.3%) 12 (16.7%) 72
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SDHB MS-HRM and MSP analysis in neuroblastoma cell linesFigure 5
SDHB MS-HRM and MSP analysis in neuroblastoma cell lines. A. SDHB MS-HRM of the SK-N-SH neuroblastoma cell 
line; the early melting shows that SDHB is clearly unmethylated in the SK-N-SH cell line isolate used by us (the curves for each 
sample represents the mean value of duplicate samples). B. Four bisulfite modified neuroblastoma DNA (IMR32, SH-SY5Y, 
Be(2)c and SK-N-SH) were amplified using specific SDHB methylated (M) and unmethylated (U) MSP primer pairs. Fully methyl-
ated DNA (100% methyl) and fully unmethylated DNA (WGA) were used as controls. The no template control (NTC) was 
also included as a negative control for both methylated and unmethylated PCR.
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controls to show that methylated genes could be detected
in the 72 breast carcinoma samples using our methodol-
ogy. A high frequency of RASSF1A (83.3%) and MAL
(41.7%) methylation was identified in the breast carcino-
mas [15,16]. Only ten breast carcinoma samples showed
no methylation for either control markers (Table 2).
RASSF1A showed principally homogeneous methylation
whereas MAL showed mostly heterogeneous methylation
in these 72 invasive breast carcinomas (Figure 4). These
results indicate methylation of the SDHA, SDHB, SDHC,
SDHD and FH genes in these samples would have been
detected if it was present.

Discussion
Overexpression of HIF-1α has been previously reported to
correlate with angiogenesis [5], an aggressive phenotype
[3,17] and poor outcome after conventional adjuvant
therapy [18,19] in breast cancer. Thus mechanisms that
enhance HIF-1α expression are important in cancer devel-
opment and would be potential targets for treatment
[2,20].

The tricarboxylic acid cycle enzymes, SDH and FH are
involved in the conversion of succinate to fumarate and
fumarate to malate, respectively. SDH also takes part in
the electron transport chain as a functional complex II
member.

Both SDH and FH can act as tumour suppressors, and
germline mutations in their genes predispose to tumour
development. Mutations in the genes coding for SDH sub-
units B, C and D predispose to familial paragangliomas
and phaeochromocytomas [11,21,22], and mutations in
FH cause hereditary leiomyomatosis and renal cell carci-
nomas [23].

Although the mechanisms that link SDH and FH muta-
tions to tumour formation are unclear, it is likely that
pseudohypoxia is a primary mechanism. Both Selak et al.
[8] and Pollard et al. [24] have suggested that overexpres-
sion of HIF-1α in normoxic conditions is due to the accu-
mulation of succinate, which then is able to inhibit the
activity of HIF-1α prolyl hydroxylases via product inhibi-
tion. A recent study has also shown that disruption of
mitochondrial metabolism using small interfering RNAs
to silence SDHB resulted in up-regulation of HIF-1α. [25].
Furthermore, microarray analysis has confirmed that
genes involved in the hypoxic pathway are dysregulated
when SDHB is silenced [25].

Since many tumour suppressor genes are known to be
inactivated by DNA promoter methylation, we examined
promoter methylation of SDH and FH in a cohort of
breast carcinomas. However, we found no evidence of

DNA methylation of the promoter regions of these genes
in breast carcinomas cancer or a panel of cancer cell lines,
including ten breast cancer cell lines, making it unlikely
that methylation of the promoter regions of these genes is
responsible for increased HIF expression in breast cancers.
Although we cannot exclude the possibility that methyla-
tion of regions other than the proximal promoter may be
involved, our findings are also in keeping with others who
have been unable to demonstrate methylation of SDHD
in neuroblastomas and FH in renal cell cancers [26,27].

Promoter methylation of SDHB has been previously
reported in primary sporadic phaeochromocytoma (32%)
and neuroblastoma (21%) [14]. We were unable to dem-
onstrate the previously reported SDHB promoter methyl-
ation in the SK-N-SH neuroblastoma cell line [14] using
both MS-HRM and methylation-specific PCR (MSP)
assays (Figure 5). Since MS-HRM methodology is capable
of detecting levels of methylation as low as 5%, it suggests
that the methylation-specific PCR (MSP) that was previ-
ously used may have miscalled the methylation. MSP is
prone to false positives, particularly if incomplete conver-
sion is present. The reported absence of correlation
between the apparent SDHB methylation and SDHB gene
expression in the cell line used in that study further sup-
ports the possibility that the methylation was artefactual
[14].

In conclusion, promoter methylation of the SDHA,
SDHB, SDHC, SDHD and FH genes is unlikely to be an
important mechanism in stabilising HIF-1 in breast carci-
nomas through the downregulation of the expression of
SDH and FH genes.
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