
BioMed CentralBMC Research Notes

ss
Open AcceTechnical Note
ProDaMa: an open source Python library to generate protein
structure datasets
Giuliano Armano and Andrea Manconi*

Address: Department of Electrical and Electronic Engineering, University of Cagliari, P.zza D'Armi, 09123 Cagliari, Italy

Email: Giuliano Armano - armano@diee.unica.it; Andrea Manconi* - manconi@diee.unica.it

* Corresponding author

Abstract
Background: The huge difference between the number of known sequences and known tertiary
structures has justified the use of automated methods for protein analysis. Although a general
methodology to solve these problems has not been yet devised, researchers are engaged in
developing more accurate techniques and algorithms whose training plays a relevant role in
determining their performance. From this perspective, particular importance is given to the training
data used in experiments, and researchers are often engaged in the generation of specialized
datasets that meet their requirements.

Findings: To facilitate the task of generating specialized datasets we devised and implemented
ProDaMa, an open source Python library than provides classes for retrieving, organizing, updating,
analyzing, and filtering protein data.

Conclusion: ProDaMa has been used to generate specialized datasets useful for secondary
structure prediction and to develop a collaborative web application aimed at generating and sharing
protein structure datasets. The library, the related database, and the documentation are freely
available at the URL http://iasc.diee.unica.it/prodama.

Introduction
Notwithstanding the growth in experimental data on pro-
tein structures, the difference between the number of
known sequences and known tertiary structures is still
very large and growing steadily. This discrepancy has jus-
tified the use of automated methods of protein sequence
analysis that has led to the development of various predic-
tors, such as systems to predict protein secondary struc-
ture (e.g. [1,2]), transmembrane regions (e.g. [3]) or beta-
turns (e.g. [4,5]). Despite the increase in accuracy, a gen-
eral methodology to solve these problems has not yet
been devised. The accuracy of these systems is also related
to the examples used for training. Different protein data-
sets have been proposed in the literature to investigate

specific problems. However, these datasets may not be in
accordance with the needs of researchers, or may not fit
the specific nature of the problem. Owing to these limita-
tions, researchers must often generate themselves datasets
able to satisfy their needs. To this end, they use specialized
databases, tools to browse them, and tools to analyze the
data stored therein. To generate a dataset, a researcher
must interact with these tools separately and overcome
the limitations associated with the migration of data from
one tool to another, and with the methods available for
managing the data. From this perspective, the Biopython
[6] library takes an important role. To help reserchers in
the task of managing bioinformatics data, Biopython pro-
vides a set of tools mainly aimed at i) parsing bioinfor-

Published: 2 October 2009

BMC Research Notes 2009, 2:202 doi:10.1186/1756-0500-2-202

Received: 17 July 2009
Accepted: 2 October 2009

This article is available from: http://www.biomedcentral.com/1756-0500/2/202

© 2009 Manconi et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 4
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19799773
http://www.biomedcentral.com/1756-0500/2/202
http://iasc.diee.unica.it/prodama
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Research Notes 2009, 2:202 http://www.biomedcentral.com/1756-0500/2/202
matics files into Python data structures, ii) dealing with a
set of popular on-line bioinformatics resources, and iii)
interfacing to common bioinformatics programs. In order
to generate protein structure datasets, major benefits can
be obtained with a set of specialized tools for automati-
cally retrieving and organizing relevant protein data, as
well as analyzing and selecting them according to specific
constraints that apply to their sequence and/or structure.
To facilitate this task we developed ProDaMa (Protein
Datasets Management), an open source Python library
aimed at helping researchers in the task of generating pro-
tein structure datasets able to meet their requirements.
ProDaMa is designed for: i) retrieving protein data from
several remote sources, ii) organizing and storing them in
a local database, and iii) analyzing and filtering them to
generate specialized datasets according to user-defined
criteria.

Retrieving Protein Data
ProDaMa allows one to retrieve data from a set of selected
remote bioinformatics sources. In particular: i) proteins
from the Protein Data Bank (PDB) [7], ii) information
about protein structure classification from CATH [8] and
SCOP [9], iii) other protein data from the PDBFINDER
database [10], and iv) information about membrane pro-
tein topologies from the MPTopo database [11].

Organizing and Updating Data
To store and organize data, a MySQL local database has
been devised and implemented. For each protein the data-
base stores: its identifier, its primary and secondary struc-
ture, data associated with the CATH classification, data
associated with the SCOP classification, and information
retrieved from the PDBFINDER database. For membrane
proteins, the database also stores information about their
topology and their membership of the generated datasets.
To take into account changes in PDB files, ProDaMa pro-
vides functionalities to update the local database. Updat-
ing is performed in three steps: i) look for obsolete
proteins in the PDB and remove the corresponding data
from the local database, ii) look for new proteins in the
PDB, and iii) retrieve and store information associated
with these proteins.

The database has been pre-loaded with proteins from the
PDB, as well as with a number of commonly used biolog-
ical datasets. In particular RS126 [12], PDBSELECT25
[13], and the clusters of structures based on 50%, 70%,
90% and 95% sequence identity from PDB. The datasets
of sequence structures used by WHAT IF [14], based on
sequence identity, resolution and R-factor, have also been
pre-loaded.

Analysing and Filtering Data
With ProDaMa new datasets can be generated and made
available starting from the content of the local database or

from any previously-generated dataset. In both cases the
information source flows through a pipeline of methods/
operators, with the obvious constraint that their input/
output compatibility along the pipeline must be ensured.
Four groups of methods/operators are available off-the-
shelf: i) search methods, ii) filter operators, iii) set opera-
tors, and iv) encoding methods. Search methods are typi-
cally applied to the local database, to select proteins that
satisfy homology and/or similarity constraints. In particu-
lar, FASTA [15] and PSI-BLAST [16] algorithms, useful to
perform search by sequence similarity, are available in the
form of web service calls, while PISCES [17], aimed at per-
forming searches by sequence identity, has been inte-
grated in ProDaMa (PISCES is used for culling sets of
protein sequences from the PDB or from an existing data-
set, according to sequence identity and structural criteria).
Methods for CATH and SCOP protein similarity search-
ing, as well as for transmembrane protein topology
search, are also provided. Furthermore, proteins can be
selected by imposing constraints on their quality -i.e., on
the experimental method that has been used, on the X-ray
resolution, as well as on their R-factor and free R-factor.
Filter operators are aimed at selecting relevant proteins
according to a unary predicate (e.g., from the input dataset
select only single-chain proteins) or according to a binary
predicate (e.g., from the input dataset select proteins with
a percent of identity ≤ 25%). In the latter case, a protein
culling tool is required. Currently, only PISCES is made
available for this purpose. Set operators currently sup-
ported are the classical union, intersection, and difference.
Encoding methods are aimed at mapping the primary struc-
ture of a protein -given in terms of the IUPAC standard
encoding- to other relevant alphabets (chemical, physical,
and hydrophobic alphabets are currently available off-
the-shelf). Alternatively, the primary structure can be
mapped to an amino acid index [18]. Any generated data-
set can be (and typically is) stored in the local database
ready to be used or updated according to the user's needs.
Of course, any such dataset can become a source for fur-
ther pipelines of methods/operators devised to generate
new datasets. Some examples follow, aimed at demon-
strating the potential and the ease of use of ProDaMa in
the task of analyzing and filtering data.

Example 1 - Shows how to manage a dataset according to
the protein quality parameters, and to the structure com-
position. Here the structures in the dataset PDBSELECT25
are restricted to those solved by X-ray crystallography,
with a maximum R-factor of 0.2, and a minimum helical
content of 10% using specialized search methods.

Get the selected dataset

dataset = Dataset('PDB-Select25')
Page 2 of 4
(page number not for citation purposes)

BMC Research Notes 2009, 2:202 http://www.biomedcentral.com/1756-0500/2/202
Look for proteins according to the con
straints on the their quality

ids = dataset.lookForProteinQuality(exp_m
ethod = 'X', MAX_rfactor = 0.2)

Look for proteins according to the con
straint on the structure composition

ids = Dataset(ids).lookForStructureCompo
sition(label = 'H', MIN = 0.1)

Example 2 - Shows how to manage a dataset according to
the classification of protein domain structures. A dataset,
obtained by removing multichain proteins from those
that meet a given constraint on their CATH classification,
is furthermore restricted using a filter operator aimed at
reducing sequence redundancy. Chains are filtered by dis-
regarding sequences with identity above 30% and length
lower than 80 residues.

Look for proteins in the database that
meet a specific constraint at the

CATH class and architecture classifica
tion level

ids = Dataset().lookForCATHClassification
(class = 'Alpha Beta', architecture
'Alpha-Beta Complex')

Look for single-chain proteins in the
dataset

ids = Dataset(ids).selectChain(mode =
'single')

Cull a set of protein sequences from the
dataset according to sequence identity

and structural criteria

ids = Dataset(ids).sequencesCull(MAX_perc
entage_identity = 30MIN_chain_length = 80)

Example 3 - Shows how to generate a non-redundant data-
set of transmembrane proteins that meet a given con-
straint on their topology, and on their transmembrane
segment length. The resulting dataset is intended to be
used for comparative assessment of transmembrane pro-
tein predictors.

Let "datasets" be a list of the datasets
used to train a set of predictors

to be assessed

Look for alpha-helical transmembrane
proteins

ids = Dataset().lookForTMTopology(topol
ogy = 'alpha helical')

Select only proteins characterized by
transmembrane segment length within

a given range (9-18) ids = Data
set(ids).lookForTMSegments(MIN = 9, MAX
18)

Select proteins with a maximum of 25%
pairwise sequence identity

ids = Dataset(ids).sequencesCull(MAX_perc
entage_identity = 25)

Remove from the dataset all proteins used
to train predictors subject to

comparative assessment

dataset = Dataset(ids)

i = list()

for d in datasets: i.append(dataset.inter
section(d))

dataset = dataset.difference(i)

Example 4 - Shows how to perform statistical analysis on a
dataset.

Let "myDataset" be the name of a dataset
previously generated and stored into

the local database

Get the dataset

dataset = Dataset('myDataset')

The size of the dataset (nb of chains)

size = len(dataset.getIds())

The total number of aminoacids in the
dataset

nb_aa = dataset.length()

The average length of a sequence in the
dataset

average_length = dataset.averageLength()

Analyze the sequence composition of the
proteins in the dataset according
Page 3 of 4
(page number not for citation purposes)

BMC Research Notes 2009, 2:202 http://www.biomedcentral.com/1756-0500/2/202
to the aminoacid, chemical, functional,
and hydrophobic standard alphabets

aa_statistics = dataset.getSequenceSta
tistics()

che_statistics = dataset.getSequenceSta
tistics(alphabet = 'che')

fun_statistics = dataset.getSequenceSta
tistics(alphabet = 'fun')

hyd_statistics = dataset.getSequenceSta
tistics(alphabet = 'hyd')

Conclusion
Protein sequence analysis is an important research area in
bioinformatics owing to the huge difference between the
number of known sequences and known tertiary struc-
tures which has led to the development of automated
methods of analysis. The choice of the training dataset
strongly affects the accuracy of the system being imple-
mented. In the literature, different protein structure data-
sets are proposed, but they do not always meet the
requirements of researchers. To help them construct spe-
cialized datasets we developed ProDaMa, an open-source
Python library that permits one to retrieve protein data
from a number of remote sources, to organize and store
these data in a local database, and to construct specialized
datasets by analyzing and selecting those proteins that ful-
fill user-defined criteria. ProDaMa has been used to
develop ProDaMa-C [19], a collaborative web application
aimed at helping researchers to generate and share protein
structure datasets. It is worth noting that the current
release of ProDaMa-C embeds only part of the ProDaMa
functionality. In future work, we plan to embed all Pro-
DaMa functionality in ProDaMa-C.

Availability and requirements
• Project name: Pro.Da.Ma.

• Project home page: http://iasc.diee.unica.it/pro
dama

• Operating System: Linux

• Programming language: Python 2.6

• Other Requirements: MySQL 5.0

• Licence: GNU GPL

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Both authors contribute equally to devising the library.

Acknowledgements
This work has been supported by the Italian Ministry of Education - Invest-
ment funds for basic research, under the project ITALBIONET - Italian
Network of Bioinformatics. A special thanks goes to Stefano Curatti, for his
help in implementing the library.

References
1. Jones DT: Protein secondary structure prediction based on

position-specific scoring matrices. Journal of Mol Biology 1999,
292:192-202.

2. Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction
of protein secondary structure in three and eight classes
using recurrent neural networks and profiles. Proteins 2002,
47:228-235.

3. Randall A, Cheng J, Sweredosk M, Baldi P: TMBpro: secondary
structure, β-contact and tertiary structure prediction of
transmembrane β-barrel proteins. Bioinformatics 2008,
24(4):513-520.

4. Shepherd AJ, Gorse D, Thornton JM: Prediction of the location
and type of beta-turns in proteins using neural networks. Pro-
tein Science 1999, 8:1045-1055.

5. Kaur H, Raghava GPS: Prediction of beta-turns in proteins from
multiple alignment using neural network. Protein Science 2003,
12:627-634.

6. Chapman B, Chang J: Biopython: Python tools for computa-
tional biology. ACM SIGBIO Newslett 2000, 20:15-19.

7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. The Protein
Data Bank 2000, 28:235-242.

8. Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J,
Orengo CA: The CATH classification revisited-architectures
reviewed and new ways to characterize structural diver-
gence in superfamilies. Nucleid Acids Research 2009,
37:D310-D314.

9. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJP,
Chothia C, Murzin AG: Data Growth and its Impact on the
SCOP Database: new Developments. Nucleic Acids Res 2008,
36:D419-D425.

10. Hooft RWW, Sander C, Scharf , Vriend G: The PDBFINDER data-
base: a summary of PDB, DSSP and HSSP information with
added value. Bioinformatics 1996, 12(6):525-529.

11. Jayasinghe S, Hristova K, White SH: MPtopo: A database of mem-
brane protein topology. Protein Science 2001, 10:455-458.

12. Rost B, Sander C: Prediction of protein secondary structure at
better than 70% accuracy. Journal of Mol Biology 1993,
232:584-599.

13. Hobohm U, Sander C: Enlarged representative set of protein
structures. Protein Sci 1994, 3(3):522-524.

14. Vriend G: WHAT IF: A molecular modeling and drug design
program. J Mol Graph 1990, 8:52-56.

15. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1998, 85(8):2444-2448.

16. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman
D: Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs. Nucleic Acids Res 1997,
25(17):2289-3402.

17. Wang G, Dunbrack RL Jr: PISCES: a protein sequence culling
server. Bioinformatics 2003, 19:1589-1591.

18. Kawashima S, Ogata H, Kanehisa M: AAindex: Amino Acid Index
Database. Nucleic Acids Res 2000, 27:368-9.

19. Armano G, Manconi A: ProDaMa-C: a Collaborative Web
Application to Generate Specialized Protein Structure
Datasets. Proceedings of the International Workshop NETTAB'09 -
Technologies, Tools and Applications for Collaborative and Social Bioinfor-
matics Research and Development: 10-13 May 2009; Catania, Sicily, Italy
2009:25-27.
Page 4 of 4
(page number not for citation purposes)

http://iasc.diee.unica.it/prodama
http://iasc.diee.unica.it/prodama
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11933069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18006547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18000004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2268628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2268628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912846

	Abstract
	Background
	Findings
	Conclusion

	Introduction
	Retrieving Protein Data
	Organizing and Updating Data
	Analysing and Filtering Data
	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

