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Abstract

Background: The Smith-Waterman algorithm is one of the most widely used tools for searching
biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman
algorithm is computationally demanding, which is further compounded by the exponential growth
of sequence databases. The recent emergence of many-core architectures, and their associated
programming interfaces, provides an opportunity to accelerate sequence database searches using
commonly available and inexpensive hardware.

Findings: Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce
GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant
performance improvement compared to other publicly available implementations, such as SWPS3,
CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to
59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the
single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance
of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an
average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest
performance of 16.087 GCUPS.

Conclusion: CUDASW++ is publicly available open-source software. It provides a significant
performance improvement for Smith-VWaterman-based protein sequence database searches by fully
exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.

Background

In bioinformatics, sequence database searches are used
to find the similarity between a query sequence and
subject sequences in the database so as to identify
evolutionary relationships. The sequence similarities can
be determined by computing their optimal local align-
ments using the dynamic programming based Smith-
Waterman (SW) algorithm [1,2]. However, the cost of
this approach is expensive in terms of computing time
and memory space. This is especially evident with
the rapid growth of biological sequence databases

demanding powerful high-performance computing solu-
tions. Due to the computationally demanding nature of
the SW algorithm, some heuristic solutions, such as
FASTA [3] and BLAST [4,5], have been devised to
improve the execution speed, but at the expense of
sensitivity. This may result in some distantly related
sequences not being detected.

The recent emergence of accelerator technologies and
many-core architectures, such as FPGAs, Cell/BEs and
GPUs, provides the opportunity to significantly reduce
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the runtime for many bioinformatics programs on
commonly available and inexpensive hardware. Modern
implementations of the SW algorithm are mainly
focused on these new technologies, including FPGA
[6-8], SSE2 [9,10], Cell/BE [10-12], GPU [13] and CUDA
[14].

Oliver et al. [6,7] constructed a linear systolic array to
perform the SW algorithm on a standard Virtex II FPGA
board, achieving a peak performance of about 5 GCUPS
using affine gap penalties. Li et al. [8] exploits custom
instructions to accelerate the SW algorithm on an Altera
Stratix EP1S40 FPGA by dividing the SW matrix into
grids of 8 x 8 cells and achieved an estimated peak
performance of about 23.8 GCUPS for DNA sequences.
Farrar [9] exploited the SSE2 instruction set to compute
the SW algorithm in a striped pattern, outperforming the
previous SIMD based SW implementations by Wozniak
[15] and Rognes [16]. This striped SW approach was then
optimized for Cell/BE [11]. SWPS3 [10] extends Farrar's
work for Cell/BE and also improves it for x86/SSE2 to
support multi-core processors. CBESW [12] was designed
for the Cell/BE-based PlayStation 3 (PS3) and achieves a
peak performance of about 3.6 GCUPS.

The first implementation of the SW algorithm on GPUs
was developed by Liu et al. [13] using OpenGL.
However, the introduction of CUDA and CUDA-enabled
GPUs has resulted in a simpler and more efficient
methodology for performing scientific computing on
GPUs. Therefore, SW-CUDA [14] has been implemented
using two NVIDIA GeForce 8800 GTX graphics cards and
achieves a peak performance of about 3.5 GCUPS.

In this paper, the compute power of CUDA-enabled
GPUs is further explored to accelerate SW sequence
database searches. Two versions of CUDASW++ are
implemented: a single-GPU version and a multi-GPU
version. The single-GPU version achieves a performance
of close to 10 GCUPS on an NVIDIA GeForce GTX 280
(GTX 280) graphics card and the multi-GPU version
achieves a performance of up to 16 GCUPS on an
NVIDIA GeForce GTX 295 (GTX 295) graphics card. Our
CUDASW++ implementations provide better perfor-
mance guarantees for protein sequence database searches
compared to SWPS3 [10], CBESW [12], SW-CUDA [14]
and NCBI-BLAST (version 2.2.19) [5].

The Smith-Waterman Algorithm

The SW algorithm is exploited to identify the optimal
local alignment between two sequences by computing
the similarity score by means of dynamic programming.
Given two sequences S, and S, of lengths I, and I,
respectively, the SW algorithm computes the similarity
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score H(i, j) of two sequences ending at position i and j
of S, and S;, respectively. H(i, j) is computed as in
equation (1), for 1 <i<l, 1 <j <l

E(i, j)=max{E(i,j-1)-0o,H(i,j—-1)-p-0c}

F(i,j)=max{F(i-1,j)-o,H({i-1j)-p-0c}

H(i, j) = max {0, E(i, j), F(i, ), H(i — 1, — 1) + sbt (S, [i], Sy [j]) }
(1)

where, sbt is the character substitution cost table, p is the
gap opening penalty and o is the gap extension penalty.
The recurrences are initialized as H(i, 0) = H(O, j) = E(i, 0) =
F(0,j)=0for0<i<l,and 0 <j < = I,. The maximum local
alignment score maxScore is defined as the maximum value
in matrix H. The calculation of H(i, j) is shown graphically
in Additional file 1, with the three arrows showing the data
dependencies in the alignment matrix: each cell depends
on its left, upper, and upper-left neighbors. This depen-
dency implies that all cells on the same minor diagonal in
the alignment matrix are independent from each other and
can be computed in parallel (see Additional file 1). Thus,
the alignment can be computed in minor-diagonal order
from the top-left corner to the bottom-right corner in the
alignment matrix. Note that, in order to calculate minor
diagonal i only the results of the minor diagonal i-1 and i-2
are necessary and therefore maxScore can be found in linear
space.

The CUDA Programming Model

CUDA (Compute Unified Device Architecture) is an
extension of C/C++ which enables users to write scalable
multi-threaded programs for CUDA-enabled GPUs [17].
CUDA programs can be executed on GPUs with
NVIDIA's Tesla unified computing architecture [18].

CUDA programs contain a sequential part, called a kernel.
The kernel is written in conventional scalar C-code. It
represents the operations to be performed by a single
thread and is invoked as a set of concurrently executing
threads. These threads are organized in a hierarchy
consisting of so-called thread blocks and grids (see
Additional file 2). A thread block is a set of concurrent
threads and a grid is a set of independent thread blocks.
Each thread has an associated unique ID (threadldx,
blockldx) € {O,..., dimBlock-1} x {O0,..., dimGrid-1}. This
pair indicates the ID within its thread block (threadldx) and
the ID of the thread block within the grid (blockldx).
Similar to MPI processes, CUDA provides each thread
access to its unique ID through corresponding variables.
The total size of a grid (dimGrid) and a thread block
(dimBlock) is explicitly specified in the kernel function-call:

kernel<<<dimGrid, dimBlock, other configurations>>>
(parameter list);
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The hierarchical organization into blocks and grids has
implications for thread communication and synchroni-
zation. Threads within a thread block can communicate
through a per-block shared memory (PBSM) and may
synchronize using barriers. However, threads located in
different blocks cannot communicate or synchronize
directly. Besides the PBSM, there are four other types of
memory: per-thread private local memory, global mem-
ory for data shared by all threads, texture memory and
constant memory. Texture memory and constant mem-
ory can be regarded as fast read-only caches.

The Tesla architecture supports CUDA applications using
a scalable processor array. The array consists of a number
of streaming multiprocessors (SMs). Each SM contains eight
scalar processors (SPs), which share a PBSM of size
16 KB (see Additional file 3). All threads of a thread
block are executed concurrently on a single SM. The SM
executes threads in small groups of 32, called warps, in
single-instruction multiple-thread (SIMT) fashion. Thus,
parallel performance is generally penalized by data-
dependent conditional branches and improves if all
threads in a warp follow the same execution path.

In order to write efficient CUDA applications, it is
important to understand the different types of memory
spaces in more detail.

e Readable and writable global memory is relatively large
(typically 1 GB), but has high latency, low bandwidth,
and is not cached. The effective bandwidth of global
memory depends heavily on the memory access pattern,
e.g. coalesced access generally improves bandwidth.

e Readable and writable per-thread local memory is of
limited size (16 KB per thread) and is not cached.
Access to local memory is as expensive as access to
global memory and is always coalesced.

® Read-only constant memory is of limited size (totally
64 KB) and cached. The reading cost scales with the
number of different addresses read by all threads.
Reading from constant memory can be as fast as
reading from a register (e.g. if all threads of a half-
warp read the same address).

e Read-only texture memory is large (depending on the
size of global memory) and is cached. Texture
memory can be read from kernels using texture
fetching device functions. Reading from texture
memory is generally (not absolutely) faster than
reading from global or local memory.

e Readable and writable per-block shared memory is fast
on-chip memory of limited size (16 KB per block).
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Shared memory can only be accessed by all threads in
a thread block. Shared memory is divided into
equally-sized banks that can be accessed simulta-
neously by each thread. Accessing the shared memory
is as fast as accessing a register as long as there are no
bank conflicts.

e Readable and writable per-thread registers are the
fastest memory to access but is of very limited size.

Findings

Methods

Considering the optimal local alignment of a query
sequence and a subject sequence as a task, we have
investigated two approaches for parallelizing the
sequence database searches using CUDA.

e [nter-task parallelization. Each task is assigned to
exactly one thread and dimBlock tasks are performed
in parallel by different threads in a thread block.

e [ntra-task parallelization. Each task is assigned to one
thread block and all dimBlock threads in the thread
block cooperate to perform the task in parallel,
exploiting the parallel characteristics of cells in the
minor diagonals as shown in Additional file 1. In
consideration of the varying cell numbers on
different minor diagonals, each minor diagonal is
considered to have a same virtual cell number that is
equal to min(l, I,) for two sequences of lengths I,
and I,. Intermediate results vectors for the (i-2)™,
(i-1)™ and i minor diagonals are allocated based on
this virtual number. If all the real cells have been
computed, it indicates the completion of the com-
puting on the minor diagonal. After one minor
diagonal is done, it swaps the intermediate results
vectors, synchronizes all the threads in the thread
block, and starts computing the next one.

Inter-task parallelization occupies more device memory
but achieves better performance than intra-task paralleliza-
tion. However, intra-task parallelization occupies signifi-
cantly less device memory and therefore can support longer
query/subject sequences. In our implementation, two
stages are used: the first stage exploits inter-task paralleliza-
tion and the second intra-task parallelization. A subject
sequence length threshold is introduced to separate these
two stages. For subject sequences of length less than or
equal to threshold, the alignments with a query sequence
are performed in the first stage in order to maximize
the performance. The alignments of subject sequences of
length greater than threshold, are carried out in the second
stage. In our implementation, the threshold is set to 3,072,
since up to 404,955 sequences (more than 99.86%) in
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Swiss-Prot release 56.6 (released on Dec. 16, 2008,
comprising 146,166,984 amino acids in 405,506
sequences and having the longest sequence of 35,213
amino acids) are of length less than or equal to 3,072. In
order to achieve high efficiency for inter-task paralleliza-
tion, the runtime of all threads in a thread block should be
roughly identical. We therefore order the subject sequences
based on their lengths, while reading in the database.
Hence, for two adjacent threads in a thread block, the
difference value between the products of the lengths of the
associated sequences is minimized. SW-CUDA [14] is
based on the inter-task parallelization approach and the
OpenGL GPU implementation presented in [13] uses the
intra-task parallelization approach. Compared to [13] and
[14], our implementation uses three techniques to improve
performance: (i) coalesced subject sequence arrangement,
(ii) coalesced global memory access and (iii) cell block
division method, which are explained in detail in the
following,

Coalesced subject sequence arrangement

For inter-task parallelization, sorted subject sequences
are arranged in an array like a multi-layer bookcase (see
Additional file 4(a)), where all symbols of a sequence are
restricted to be stored in the same column from top to
bottom and all sequences are arranged in increasing
length order from left to right and top to bottom in the
array. Sorted subject sequences for the intra-task paralle-
lization are sequentially stored in an array row by row
from the top-left corner to the bottom-right corner (see
Additional file 4(b)), where all symbols of a sequence
are restricted to be stored in the same row from left to
right. Using these arrangement patterns for both
parallelization methods, access to the subject sequences
is coalesced for all threads in a half-warp, even if texture
cache is not used. It is however important to utilize the
texture cache, if the range limitation of texture reference
allows, so as to achieve maximum performance on
coalesced access patterns. A hash table records the
location coordinate in the array and the length of each
sequence, providing fast access to any sequence.

Coalesced global memory access

During the execution of the SW algorithm, additional
memory is required to store intermediate alignment
data. The size of this memory is O(min{l,, I,}) for two
sequences of length I, and I,. To support much longer
sequences, the global memory is used to store the
intermediate results. To gain maximum bandwidth and
best performance, all threads in a half-warp should
access the intermediate results in global memory in a
coalesced pattern. A prerequisite for coalescing is that the
words accessed by all threads in a half-warp must lie in
the same segment. The memory spaces referred to by the
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same variable names (not referring to same addresses)
for all threads in a half-warp have to be allocated in the
form of an array to keep them contiguous in address.
Additional file 5 presents two global memory allocation
patterns of a basic type vector variable of size N for M
processing entities (threads or thread blocks, here). Inter-
task parallelization exploits the pattern shown in
Additional file 5(a), where a memory slot is allocated
to a thread in a thread block and is indexed top-to-
bottom, and the access to MemSlot using the same index
for all threads in a half-warp is coalesced into one or two
memory transactions depending on the compute capa-
city of devices. Intra-task parallelization exploits the
pattern shown in Additional file 5(b), where a memory
slot is allocated to a thread block and is indexed left-to-
right, and the coalesced access is able to be obtained
using the common global memory access pattern, i.e.
that successive threads access the successive addresses in
a memory slot. These two approaches work in a multi-
pass fashion, where in every pass, a grid consisting of
thread blocks whose number is equal to or less than the
number of SMs are bound to the kernel and launched,
and the memory allocated for one pass is multiplexed by
the successive following passes, reducing the require-
ments for global memory.

Cell block division method

To maximize performance and to reduce the bandwidth
demand of global memory, we propose a cell block
division method for the inter-task parallelization, where
the alignment matrix is divided into cell blocks of equal
size. A cell block is a square matrix of size n x n. Assume
that the lengths of a query sequence and a subject sequence
are glen and slen, respectively. In this case, both glen and
slen must be multiples of n. If the length is not a multiple
of n, the sequence is padded with an appropriate number
of dummy symbols. In order to keep the similarity score
unchanged, the dummy symbol must be added to the
scoring matrix and the score between the dummy symbol
and itself or a real symbol is set to zero. For simplicity,
assume that glen and slen are multiples of n. Without cell
block division, the computation of one cell, including the
computation of the corresponding values in the H, E and
F matrices, results in one load operation and one store
operation for the intermediate results stored in the global
memory. We define the runtime of one load operation to
be T;, the runtime of one store operation to be T, and the
computation time of one cell value to be T,. Then, without
cell block division, the total runtime can be denoted as:

glenxslenx(T;+ T, +T,) (2)

However, when using the cell block division method, the
computation of n cells in one column (or row) in a cell
block only requires one load operation and one store
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operation on the global memory instead of n load
operations and n store operations. In this case, the total
runtime can be denoted as:

qlenxslenx(l(Tl+T3)+TCJ (3)
n

Since one global memory access takes hundreds of clock
cycles, the cell block division method leads to a
signification reduction of the total runtime due to a
reduction in the global memory accesses. However, the
size of cell block is limited by the number of registers (or
the amount of shared memory) available per thread.
Therefore, this leads to the optimal cell block size of 8 x
8 for our implementation.

Constant memory is exploited to store the gap penalties,
scoring matrix and the query sequence. Before searching
for a query sequence against the database, the query
sequence is loaded into constant memory. The 64 KB
memory capability of the constant memory makes it
possible to accommodate much longer sequences. In our
implementation, sequences of length up to 59K (see
Table 1) can be supported. As mentioned above, as long
as all threads in a half-warp read the same address in
constant memory, the access is as fast as reading from
registers. Placing the query sequence in constant memory
provides a significant performance improvement as all
threads in a warp on the common execution path read
the same query sequence address. The scoring matrix is
loaded into shared memory, as the performance of
constant memory degrades linearly if multiple addresses
are requested by threads. This is because threads may
frequently access different addresses in the scoring
matrix. The integer functions max(x, y) and min(x, y) in
the CUDA runtime library are used to map them to a
single instruction on the device. Figure 1 presents the
pseudocodes of the CUDA kernels for the inter-task and
intra-task parallelization.

We also examined the SWAT-like optimizations [19]
which resulted in worse performance. SWAT optimiza-
tion is based on the following observation: for most cells
in the matrix, F remains zero and does not contribute to
the value of H. F only starts to influence the value of H,

Table I: Comparison of supported maximum query sequence
length

Smith-Waterman Software Maximum Sequence Length

NCBI-BLAST [5] Unlimited
SWPS3 [10] 10K
CBESW [12] 852
SW-CUDA [14] 2050
CUDASW++ 59K
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and needs to be recalculated sequentially, when H is
greater than the threshold. However, due to the
divergence of the execution paths of all threads in a
warp when processing to decide whether or not it is
required to recalculate the value of F, this approach leads
to a performance reduction on CUDA-enabled GPUs.

Results and discussion

To remove the dependency on the query sequences and
the databases used for the different tests, cell updates per
second (CUPS) is a commonly used performance measure
in bioinformatics. A CUPS represents the time for a
complete computation of one cell in matrix H, including
all memory operations and the corresponding computa-
tion of the values in the E and F matrices. Given a query
sequence of size Q and a database of size D, the GCUPS
(billion cell updates per second) value is calculated by:

x| D

QD) "
tx10

where |Q| is the total number of symbols in the query
sequence, |D| is the total number of symbols in the
database and t is the runtime in second. In this paper, for
the single-GPU version, the runtime t includes the
transfer time of the query sequences from host to GPU,
the calculation time of the SW algorithm, and the
transfer-back time of the scores; and for the multi-GPU
version, the runtime ¢ includes the creating and destroy-
ing time of host threads, the transfer time of the database
sequences and query sequences from host memory to
GPU, the calculation time of the SW algorithm, and the
transfer-back time of the scores.

The performance of CUDASW++ is benchmarked and
analyzed by searching for 25 sequences of length from
144 to 5,478 against Swiss-Prot release 56.6. The tests of
the single-GPU version are carried out on a GIX 280
graphics card, with 30 SMs comprising 240 SPs and 1 GB
RAM, installed in a PC with an AMD Opteron 248 2.2
GHz processor running the Linux OS. This graphics card
has a core frequency of 602 MHz, a unified processors
frequency of 1,296 MHz and a memory clock of 1,107
MHz. The tests of the multi-GPU version are carried out
on a GTX 295 graphics card with two G80 GPU-chips on
a single card, which consists of 480 SPs (240 SPs per
GPU) and 1.8 GB RAM and is also installed in the above
PC. This graphics card has a slightly lower clock
frequencies compared to the GTX 280 (core frequency
of 576 MHz, unified processors frequency of 1,242 MHz
memory clock of 999 MHz). Maximal performance is
achieved for a thread block size of 256 threads and a grid
size equal to the number of SMs for both the single-GPU
and multi-GPU versions. The scoring matrix BLOSUMA45
is used with a gap penalty of 10-2 k. For the single-GPU
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Query sequence length -> glen, aligned to 8 bytes and padded with
dummy symbols;

Subject sequence length -> dblen, aligned to 8 bytes and padded with
dummy symbols;

A dummy symbol has a score of zero with a real symbol, so that the
similarity score keeps unchanged;

Assume that the query sequence is accessed in the inner loop.
8#*8**?**8**8#*8#*88*8**!**8**8#**#**8**********#t**ﬂ**;‘
Step 1: Load the scoring matrix from constant memory to shared
memory in parallel by all threads and then synchronize to update the
new values in the shared memory.

Step 2: calculate the subject sequence index corresponding to the
current thread.

Step 3: Look up the hash table and find the length and coordinate
information of the subject sequence.

Step 4: Zero H and E vectors;
for (i=1;1<=dblen;1+= 8)§{
Initialize all the relevant variables:
for(j = 1; j <= glen; j += 8){
forlk =0: k < 8; k++){
load H and E data value of the cell (i-1, j+k);
compute the H, E and F values of the cells from (i, j*k) to
(i+7, j+k) and calculate the maximum score;

save H and E data value of the cell (i + 7, j + k):

¥
]
’

i

Step 5: Each thread saves the similarity score corresponding to it into
the storage space allocated in the global memory.

JEEFSkEE R Rk R RS ’**J\SSU M PTIO\ SEESHRFRRERRFRRERRFRRE

Query sequence length -> glen, real length;

Subject Sequence length -> dblen, real length;

D A, D _Band D_C vectors store the H values of the cells in the
(i-2)th, (i-1)th and ith minor diagonals, respectively:

HH vector stores the F values of the cells in the i minor diagonals;
V_0 and V_C vectors store the E values of the cells in the (i-1)sh and
ith minor diagonals, respectively.
*#*#**#t**t**&**********#t**ﬂ**B**t*#t**s**?**s**9*38__»'
Step |: Load the scoring matrix from constant memory to shared
memory in parallel by all threads and synchronize to update the new
values in the shared memory.

Step 2: calculate the subject sequence index corresponding to the
current thread block.

Step 3: Look up the hash table and find the length and coordinate
information of the subject sequence.

Step 4: Initialize the vectors D_A, D B,D_C,HH,V_Oand V_C:
for(i = 1: 1 <= glen + dblen -1; 1 ++){
compute the H, E and F values of the cells in the i#h minor
diagonal by all threads in the thread block in parallel;
Swapping the functions of the vectors DA, D Band D_C

and the functions of vectors V_O and V_0O;

1
]

Each thread stores its maximum score into the shared memory
and then synchronizaiton;
Thread 0 calculate the maximum score for this alignment;

Step 5: Let thread 0 save the similarity score into the storage space
allocated in the global memory.

{a) Inter-task parallelization

Figure |

(b) Intra-task parallelization

Pseudocodes of the CUDA kernels for the inter-task and intra-task parallelization.

version, it achieves a relatively constant performance for
all 25 query sequences (see Table 2): with a highest
performance of 9.660 GCUPS, a lowest performance of
9.039 GCUPS and an average performance of 9.509
GCUPS. For the multi-GPU version, the performance
increases as the lengths of query sequences become
longer, due to the overhead incurred mainly by the
database loading from host memory to GPU and the
host threads scheduling. It achieves a highest perfor-
mance of 16.087 GCUPS, a lowest performance of
10.660 GCUPS and an average performance of 14.484
GCUPS.

We next compare the performance of CUDASW++ with
other publicly available implementations for protein
database searches: SWPS3, SW-CUDA and NCBI-BLAST
(version 2.2.19). All the following tests are performed
against Swiss-Prot release 56.6. SWPS3 outperforms the

other two publicly available Cell/BE implementations
(Farrar [11] and CBESW [12]) and therefore we have
decided not to include comparisons to [11] and [12].
SWPS3 for x86/SSE2 is tested on a Linux workstation
with two Intel Xeon 3.0 GHz dual-core processors by
running four threads and SWPS3 for Cell/BE is tested on
a stand-alone PS3. The scoring matrix BLOSUM50 is
used for the tests with a gap penalty of 10-2 k and 5-2 k
respectively. All the other parameters are used by default.
Figures 2 and 3 present the performance comparison
between CUDASW++ and SWPS3 for x86/SSE2 and Cell/
BE, respectively. From the figures, the performance of
SWPS3 for x86/SSE2 is sensitive with respect to gap
penalties, whereas, surprisingly, the gap penalties seem
to have little impact on the performance of SWPS3 for
Cell/BE. SWPS3 achieves a peak performance of up to 15
GCUPS for x86/SSE2 and a peak performance of up to 9
GCUPS for Cell/BE. The multi-GPU version outperforms
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Table 2: Performance Evaluation of CUDASW++
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Queries Length Single-GPU version Multi-GPU version
Time(s) GCUPS Time(s) GCUPS
P02232 144 2.33 9.039 1.97 10.660
POLTTI 189 3.01 9.163 2.47 11.194
P05013 189 3.01 9.163 2.40 11.513
P14942 222 3.48 9.333 2.87 11.304
P00762 246 3.82 9.402 3.10 11.591
P07327 375 5.80 9.453 4.21 13.034
PO 1008 464 7.08 9.582 4.67 14.532
P10635 497 7.66 9.483 4.99 14.566
P25705 553 8.6l 9.390 5.49 14.711
P03435 567 8.72 9.507 5.52 15.022
P42357 657 10.11 9.496 6.50 14.777
P21177 729 .16 9.552 7.00 15.225
Q38941 850 13.02 9.539 8.15 15.235
060341 852 13.03 9.556 8.11 15.355
P27895 1000 15.13 9.660 9.34 15.644
P07756 1500 22.74 9.642 14.02 15.640
P04775 2005 30.37 9.649 18.48 15.855
P19096 2504 37.89 9.659 22.79 16.058
P28167 3005 45.54 9.644 27.41 16.027
POC6B8 3564 54.01 9.644 32.45 16.055
P20930 4061 61.60 9.635 36.94 16.070
P08519 4548 68.98 9.637 41.45 16.039
Q7TMAS 4743 71.91 9.640 43.18 16.054
P33450 5147 78.13 9.629 46.83 16.066
Q9UKNI 5478 83.15 9.629 49.77 16.087

SWPS3 for x86/SSE2 and Cell/BE for all the query
sequences, but the single-GPU version only outperforms
SWPS3 for Cell/BE. On average, compared to SWPS3 for
x86/SSE2, the multi-GPU version runs about 1.46 times
faster than SWPS3 with a gap penalty of 10-2 k and
about 2.74 times faster than with a gap penalty of 5-2 k;
compared to SWPS3 for Cell/BE, the multi-GPU version
runs about 4.70 times faster than SWPS3 with a gap
penalty of 10-2 k and about 4.73 times faster than
SWPS3 with a gap penalty of 5-2 k.

—&—Single-GPU CUDASW ++ —@— Multi-GPU CUDASW++

~—#&— SWPS3/SSE2 (10-2k)

—<— SWPS3/SSE2 (5-2k)

GCUPS

144 189 246 464 553 657 850 10002005 3005 4061 4743 5478
Query Sequence Length
Figure 2
Performance comparison between CUDASW++ and
SWPS3 for x86/SSE2.

The performance of SW-CUDA is re-benchmarked using
the scoring matrix BLOSUM50 with a gap penalty of
10-2 k on the GTX 280 and GTX 295 graphics cards,
respectively, installed in the above PC with an AMD
processor. The performance comparison between
CUDASW++ and SW-CUDA is shown in Figure 4. As
can be seen from the figure, even the single-GPU version
running on the GTX 280 outperforms SW-CUDA
running on the GTX 295 for all the query sequences
supported by the latter. Compared to SW-CUDA running

—#—Single-GPU CUDASW++ —@— Multi-GPU CUDASW++

~—#4—SWPS3/Cell/BE (10-2k) —<— SWPS3/Cell/BE (5-2k)

GCUPS

144 189 246 464 553 657 850 1000 2005 3005 4061 4743 5478
Query Sequence Length
Figure 3

Performance comparison between CUDASW++ and
SWPS3 for Cell/BE.
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—4— Single-GPU CUDASW++ —®— Multi-GPU CUDASW-++
SW-CUDA (GTX 280) ——SW-CUDA (GTX 295)

18 -+

16 1 M
14

GCUPS
E 3
L 3
'Y

O Moo
/

144 189 246 464 553 657 850 1000 2005
Query Sequence Length
Figure 4
Performance comparison between CUDASW++ and
SW-CUDA.

on the GTX 280 and on the GIX 295, respectively, the
single-GPU version runs about 3.65 and 2.08 times faster
on average and up to 6.34 and 3.85 times faster for
longer sequences, and the multi-GPU version runs about
5.36 and 3.05 times faster on average and up to 10.27
and 6.24 times faster for longer sequences.

The performance of NCBI-BLAST is benchmarked on a
Linux workstation with an Intel Xeon 3.0 GHz dual-core
processor. The scoring matrices BLOSUMG62 with a gap
penalty of 10-2 k and BLOSUM50 with a gap penalty of
10-3 k are used for the tests. All the other parameters are
used by default. Figure 5 presents the performance
comparison between CUDASW++ and NCBI-BLAST. The
NCBI-BLAST seems to be highly sensitive in terms of
scoring matrix and gap penalties. As observed in our
tests, it runs about 3 times faster using BLOSUMG62 than
using BLOSUMS50 on average. NCBI-BLAST shows
increasing performance as the query sequence lengths
increase due to more effective filtration. Compared to

—#—Single-GPU CUDASW++ —@— Multi-GPU CUDASW++

NCBI-BLAST (BL62, 10-2k) —<— NCBI-BLAST (BLS0,10-3k)
18
16
14
- 12 4
R P e e I ML 0 /AR A
8 8 N

144 189 246 464 553 657 850 10002005 3005 4061 4743 5478
Query Sequence Length

Figure 5

Performance comparison between CUDASW++ and

NCBI-BLAST.

http://www.biomedcentral.com/1756-0500/2/73

NCBI-BLAST using BLOSUMS50, the two versions of
CUDASW++ outperform it for all the query sequences of
length from 144 to 5,478; Compared to NCBI-BLAST
using BLOSUMG62, the multi-GPU version outperforms it
for all the query sequences and for the sequences of
length less than or equal to 4,061, the single-GPU
version achieves better performance but for very long
sequences of length greater than 4,061, NCBI-BLAST
outperforms it. Considering that there are only 258
sequences of length greater than 4,061 in Swiss-Prot
release 56.6 (the percentage is about 0.063%), the
overall performance of the single-GPU version is
significantly better. On average, the single-GPU version
runs about 6.27 times faster than NCBI-BLAST using
BLOSUM50 and about 2.02 times faster than using
BLOSUMG62; and the multi-GPU version runs about 9.55
times faster than NCBI-BLAST using BLOSUM50 and
about 3.08 times faster than using BLOSUMG62.

Conclusion

In this paper, we have demonstrated the compute
capability of CUDA-enabled GPUs for accelerating SW
sequence database searches. CUDASW++ is targeted for
CUDA-enabled GPUs with compute capability 1.2 and
higher and supports query sequences of length up to 59K,
far longer than the maximum sequence length 35,213 in
Swiss-Prot release 56.6. Two versions of CUDASW++ are
implemented and benchmarked: a single-GPU version and
a multi-GPU version. For the single-GPU version, it
achieves consistent performance for query sequences of
length varying from 144 to 5,478, where the performance
figures vary from a low of 9.039 GCUPS to a high of 9.660
GCUPS, with an average performance of 9.509 GCUPS; for
the multi-GPU version, it achieves an increasing perfor-
mance as the lengths of the query sequences increase from
144 to 5,478, where the performance figures vary from a
low of 10.660 GCUPS to a high of 16.087 GCUPS, with an
average performance of 10.660 GCUPS. CUDASW++
outperforms previous SW sequence database search imple-
mentations on GPUs and other implementations using
SSE2, Cell/B.E or heuristics.

Due to the rapid growth in biological sequence databases,
even more powerful high-performance solutions will be
demanded in the near future. Since computer architectures
are rapidly developing towards many-core systems, future
solutions are likely to be aimed at exploiting the compute
capability of these high-performance architectures. Our
results on GPU show that it is possible to improve the
performance of biological algorithms by making full use of
the compute characteristics of the underlying commodity
hardware and further, our results are especially encoura-
ging since GPU performance grows faster than multi-core
CPUs [20].
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Availability and requirements
e Project name: CUDASW++

¢ Project home page: http://cudasw.sourceforge.net/
e Operating System: Linux
e Programming language: CUDA and C

e Other requirements: CUDA SDK and Toolkits 2.0
or higher

e License: none
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NVIDIA GeForce GTX 280; GTX 295: NVIDIA GeForce GTX
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arrangement for the intra-task parallelization.
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