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Abstract
Background: Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect 
individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large 
scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting 
epistatic interactions.

Findings: AntEpiSeeker, a new two-stage ant colony optimization algorithm, has been developed for detecting 
epistasis in a case-control design. Based on some practical epistatic models, AntEpiSeeker has performed very well.

Conclusions: AntEpiSeeker is a powerful and efficient tool for large-scale association studies and can be downloaded 
from http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html.

Background
Genetic association studies, which aim at detecting asso-
ciation between one or more genetic polymorphisms and
a trait of interest such as a quantitative characteristic, dis-
crete attribute or disease, have gained a lot of popularity
in the past decade [1]. Although great progress in map-
ping genes responsible for Mendelian traits has been
made, the genetic basis underlying many complex dis-
eases remain unknown. It is widely accepted that these
diseases may be caused by the joint effects of multiple
genetic variations, which may show little effect individu-
ally but strong interactions. Such interactive effects of
multiple genetic variations are often referred to as epista-
sis or epistatic interactions [2]. Recently, increasing num-
bers of studies have suggested the presence of epistatic
interactions in complex diseases, e.g. breast cancer [3],
type-2 diabetes [4] and atrial fibrillation [5].

A number of multi-locus approaches have been pro-
posed to detect epistatic interactions, such as the combi-
natorial partitioning method (CPM) [6], restricted
partitioning method (RPM) [7], the multifactor-dimen-
sionality reduction (MDR) [3], the focused interaction

testing framework (FITF) [8] and the backward genotype-
trait association (BGTA) [9]. Although these methods
were tested and showed promising performance on small
data sets, the computational burden prohibits their appli-
cation on large scale datasets.

Typically, a large scale dataset for association studies
may have several tens to hundreds of thousands of mark-
ers. For example, the genome-wide case-control data set
for Age-related Macular Degeneration (AMD) contains
more than 100 thousand SNPs genotyped on 96 cases and
50 controls [10]. An exhaustive search of two-locus inter-
actions needs to evaluate at least 5.00 × 109 locus combi-
nations, and this number increases to 1.67 × 1014 when
three-locus interactions are considered. Although this
process is computationally hard it could be enhanced by
two recent approaches: the Bayesian epistasis association
mapping (BEAM) [11] and SNPharvester [12], which
were shown to be able to handle large scale datasets.
However, more efficient and accurate methods are still
desired.

The solution to this difficult search problem could be
achieved using an optimization technique called ant col-
ony optimization (ACO) algorithm. Ant colony algo-
rithms, proposed first by Dorigio and Gambardella [13],
are tools to solve difficult optimization problems such as
the traveling salesman problem. ACO simulates how real
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ant colonies find the shortest route to a food source. Real
ant colonies communicate through chemicals called
pheromones, which are deposited along the path an ant
travels. Ants that choose a shorter path will transverse
the distance at a faster rate, resulting in more phero-
mones deposited along that path. Subsequent ants will
then choose the path with more pheromones, thus creat-
ing a positive feedback. In ACO, artificial ants work as
parallel units that communicate through a probability
distribution function (PDF), which is updated by weights
or pheromones. The change in pheromones is deter-
mined by some type of expert knowledge. As the PDF is
updated, "paths" that perform better will be sampled at
higher rates by subsequent artificial ants, and in turn
deposit more pheromones. Thus, a positive feedback
similar to real ant colonies is simulated.

Two recent studies showed the possibility of applying
ant colony optimization to association studies [14,15].
However, the use of MDR for detecting epistatic interac-
tions in these studies dramatically increased the compu-
tational burden. Besides, these studies did not test
performance using the more practical epistatic models
such as the ones proposed by Marchini et al. [16].

In this study, a new tool named AntEpiSeeker has been
developed to search for epistatic interactions in large-
scale association studies. The use of χ2 values as score
function to measure the association between an SNP set
and the phenotype is computationally efficient. The two-
stage design of ant colony optimization and the idea of
searching bigger SNP sets harboring epistatic interac-
tions enhance the power of ACO algorithms. AntEpi-
Seeker showed improved performance based on some
practical epistatic models and large scale datasets.

Methods
The generic ant colony optimization
The ACO has been proven to be a successful technique
for numerous non-deterministic polynomial-time hard
(NP-hard) combinatorial optimization problems such as
the traveling salesman problem, the graph coloring prob-
lem, the frequency assignment problem, the quadratic
assignment problem, feature selection for microarray
classification and the vehicle routing problem [17-22].
ACO has the advantages of a positive feedback, and it
lends itself to parallel computing, among other advan-
tages.

As defined by Dorigio and Gambardella [13], ACO is
comprised of parallel artificial ants that communicate
through a probability density function (PDF) that is
updated by weights or 'pheromone levels'. In this case, the
ACO is an iterative procedure which stops at a pre-
defined number of iterations and the weights are deter-
mined by the significance of the epistatic interaction of

the selected set of SNPs. The probability of selecting
locus k at iteration i is defined as:

where τk(i) is the amount of pheromones for locus k at

iteration i;  is some form of prior information, which

is set to 1 in this study as we treat each locus equally; α is

the parameter determining the weight given to the phero-

mones deposited by ants. The ACO is initialized with all

loci having an equal level of pheromone τ0. Using the PDF

defined in equation (1), each artificial ant, m, will select

an SNP set Sm of n loci from the whole set of genomic

SNPs. The epistatic interaction for this SNP set is evalu-

ated by the χ2 test. The pheromone level of each locus k in

Sm is then updated, based on the performance of Sm, as:

where ρ is a constant between 0 and 1 that represents
the pheromone evaporation rate; Δτk(i) is the change in
pheromone level for locus k at iteration i, which equals
0.1 χ2 of Sm in this study, and is set to zero if locus k  Sm.
This process is repeated for all artificial ants.

AntEpiSeeker algoritms
In an effort to increase the detection power of the generic
ACO as outlined in the previous section, an advanced
ACO algorithm called AntEpiSeeker, which employs a
two-stage design of ACO, is proposed. The first stage of
AntEpiSeeker searches SNP sets of sufficient size (larger
than the number of SNPs in a given epistatic interaction)
using the above ACO, which results in a pre-defined
number of highly suspected SNP sets determined by χ2

scores, and another SNP set of a pre-defined size, deter-
mined by pheromone levels. The second stage of AntEpi-
Seeker conducts exhaustive search of epistatic
interactions within the highly suspected SNP sets, and
within the reduced set of SNPs with top ranking phero-
mone levels. The use of highly suspected SNP sets (much
smaller than the available SNPs in the data) enhances the
power of detecting pure epistasis based on greatly
reduced computational cost and the SNP set with top
ranking pheromone levels is used to detect epistasis
among the SNPs with big marginal effects. Additionally,
we suggest two rounds of search: 1) using a relatively
large size SNP set, which is sensitive to strong signals,

p i
k i k

jj
L i k

k( )
( ( ))

( ( ))
=

=∑

t ah b

t ah b
1

(1)

h b
k

t r t tk k ki i i( ) ( ) ( ) ( ),+ = − + Δ1 1 (2)



Wang et al. BMC Research Notes 2010, 3:117
http://www.biomedcentral.com/1756-0500/3/117

Page 3 of 8
and 2) using a relatively small size SNP set, which is sensi-
tive to weak signals. The pseudocode for AntEpiSeeker is
shown in Figure 1.

Minimizing false positives
AntEpiSeeker may report all detected epistatic interac-
tions at a p-value threshold. In addition, AntEpiSeeker

incorporates a procedure for minimizing false positives,
which can be described as:

1) The set of all detected epistatic interactions is
denoted by EIall and another null set, holding the epistatic
interactions with minimized false positives, is denoted by
EIm.

Figure 1 Pseudocode for AntEpiSeeker.

AntEpiSeeker algorithm 

Input paramters 

D: a dataset of N case and control samples genotyped at L loci 

iEpiModel: number of SNPs in an epistatic interaction 

Pvalue: statistical significance threshold 

largesetsize: size of the large SNP sets 

smallsetsize: size of the small SNP sets 

iAntCount: number of ants 

iItCountLarge, iItCountSmall: number of iterations for large or small SNP sets 

0τ : initial pheromone level for each locus 

ρ : evaporation rate 

α : parameter determining the weight given to pheromone deposited by ants  

 
for setsize in (largesetsize, smallsetsize) 

     If setsize==largesetsize, iItCount=iItCountLarge; else, iItCount=iItCountSmall 

     Initialize the pheromone level of each locus 

     i=0 

     Iteration begins 

Each ant selects a SNP set with setsize loci sequentially according to equation (1) 

     Calculate the 2
χ test  for each SNP set and update the pheromone for each locus in the SNP set 

     Record the SNP sets with the highest 2
χ test 

     Clear ants 

     i=i+1 

     Iteration ends if i==iItCount 

   Post-processing: conduct exhaustive search of epistatic interactions of a desired model within the recorded SNP sets with the 

highest 2
χ test and the loci with top ranking pheromone levels 

End for 
Optional: minimize false positives 
Return epistatic interactions with p-values 
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2) Each reported epistatic interaction Ii in EIall is
attempted to be added into EIm sequentially. If Ii does not
have any locus overlapping with those of each epistatic
interaction in EIm, Ii is added to EIm. Otherwise, assuming
that the epistatic interaction Jj in EIm has at least one
locus overlapping with those of Ii, determine if the p-
value of Ii is smaller than that of Jj. If so, Jj in EIm is
replaced by Ii. If not, Ii is not reported in EIm.

The software
The AntEpiseeker package was written in C++. Before
compiling, the GNU Scientific Library (GSL) needs to be
installed on the user's computer. A separate parameter
file named "parameters.txt" specifies the parameters
needed to run the program. The SNP data file should be
comma-delimited, with the first row specifying the SNP
names. All subsequent rows should contain SNP data for
each sample. The SNP data should be coded by 0, 1 and 2.
The last column indicates the sample status (0 indicates
control and 1 indicates case). There are three output files.
"AntEpiSeeker.log" records some intermediate results,
"results_maximized.txt" reports all detected epistatic
interactions, and the user-specified output file shows the
epistatic interactions with minimized false positives. The
user specified output file includes the locus name, χ2

value and p-value. The software and its source code are
available for download at http://nce.ads.uga.edu/~romd-
hane/AntEpiSeeker/index.html.

Parameter Setting
The parameters needed to run AntEpiseeker include
iAntCount, iItCountLarge, iItCountSmall, α, iTopModel,
iTopLoci, ρ, τ0, largesetsize, smallsetsize, iEpiModel,
pvalue, INPFILE, OUTFILE. The parameter "iEpiModel"
specifies the number of SNPs in an epistatic interaction.
The parameters "largesetsize", "smallsetsize" must be
greater than "iEpiModel". For a two-locus interaction
model, we suggest largesetsize = 6, smallsetsize = 3, iEpi-
Mode = 2; For a three-locus interaction model, we suggest
largesetsize = 6, smallsetsize = 4, iEpiModel = 3. The
parameters "iItCountLarge", "iItCountSmall" should be
chosen according to the number of SNPs genotyped in
the data (Denoted by L). Typically, we suggest iItCountS-
mall ≥ 0.1 × L and iItCountLarge = 0.5 × iItCountSmall.
iAntCount may vary from 500 to 5,000, where larger iAnt-
Count should correspond to larger L. ρ should range from
0.01 to 0.1 for better performance, where smaller L
should use larger ρ. The default parameters in the
AntEpiSeeker package, used in our most simulation stud-
ies, were an optimal setting balanced between ρ and iAnt-
Count, which should work well on medium size datasets
(2 × 103 ≤ L ≤ 2 × 104).

Results
Power and computational time evaluation on a simulated 
data set
The performance of AntEpiSeeker was evaluated by com-
parison with two recent methods, BEAM [11] and
SNPHarverster [12], as well as the generic ACO algo-
rithm, using simulated data generated by the simulation
program provided in the BEAM package. Note that the
generic ACO algorithm does not select SNP sets of bigger
size, and thus the parameters "largesetsize, smallsetsize,
iItCountLarge, iItCountSmall" were not needed for the
generic ACO algorithm. The simulation study was con-
ducted following the procedure and parameter settings of
many previous studies [11,12,16,23,24]. For each combi-
nation of parameter settings, 50 datasets containing 4,000
samples (2,000 cases and 2,000 controls) and 2000 SNPs
were simulated. The detection power was calculated as
the ratio of the number of successful identifications to the
number of datasets at the significance level 0.01 after
Bonferroni correction. Data was simulated following
three genetic models: 1) additive model, 2) epistatic inter-
actions with multiplicative effects and 3) epistatic inter-
actions with threshold effects, as defined by Marchini et
al. [16]. Other parameters for data simulation were the
effective size λ (a measure of marginal effects as defined
by Marchini et al. [16]), linkage disequilibrium between
SNPs measured by r2 and minor allele frequencies
(MAFs). λ was set to 0.3 for Model 1 and 0.2 for Models 2
and 3. For r2, two values (0.7 and 1.0) were used for each
model. For MAF, three values (0.1, 0.2, and 0.5) were con-
sidered. The parameters for BEAM were set as default.
The parameter settings for SNPHarvester were: 1 ≤ k ≤ 5
and paths = 50, as suggested by its original simulation
study. The parameter settings for AntEpiSeeker were:
largesetsize = 6, smallsetsize = 3, iItCountLarge = 150, iIt-
CountSmall = 300, iEpiModel = 2, iAntCount = 1000, α =
1, ρ = 0.05 and τ0 = 100 (also available in the software
package of AntEpiSeeker). The parameters of the generic
ACO algorithm were set as iAntCount = 1000, α = 1, ρ =
0.05, τ0 = 100, iItCount (number of iterations) = 900, iEpi-
Model = 2. The comparison of detection power for
AntEpiSeeker, BEAM, SNPHarvester and the generic
ACO is presented in Figure 2. The results show that
AntEpiSeeker outperforms BEAM in all parameter set-
tings and is superior to SNPHarvester and the generic
ACO in most parameter settings.

In addition, AntEpiSeeker is computationally efficient.
In the above simulation study, the average running time
of AntEpiSeeker, SNPHarvester and BEAM were 27, 54
and 133 minutes respectively, using a Linux system based
on Dual Core AMD Opteron(tm) Processor 275.
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Figure 2 Power comparison between AntEpiSeeker, SNPHarvester, BEAM and Generic ACO. The absence of bars indicates zero power.
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False positive rate evaluation on a null simulation
To approximate the false positive rates of AntEpiSeeker, a
dataset without any genetic effects was simulated. The
dataset contained 2,000 SNPs and 4,000 samples (2000
cases and 2000 controls), whose SNPs were generated
independently with MAF uniformly distributed in [0.1,
0.5]. The parameters for running programs were the same
as used in the first experiment. At different p-values, the
false positive rates of the exhaustive search, BEAM,
SNPHarvester and AntEpiSeeker are shown in Table 1.
BEAM did not report any false positive, while the false
positive rate of SNPHarvester is much higher than
exhaustive search. AntEpiSeeker has a false positive rate
that is comparable to but no larger than the desired sig-
nificance level.

Evaluation of AntEpiSeeker on a simulated large scale 
dataset
To further test the performance of AntEpiseeker, a real
data based simulation study was carried out. The dataset
consisted of the SNP genotypes on human chromosome 1
from 912 individuals (11 populations) of the International
HapMap project (Phase 3) [25]. Loci with missing geno-
types or MAF<0.1 were removed, resulting in 73,355 SNP
markers for analysis. Because it has no case/control status

attached, the data was randomly and equally divided
between cases and controls (456 individuals in each
group). Additionally, 132 epistatic interactions following
the above mentioned 3 models were added to the data
with randomly selected causative loci. The p-value
threshold was set at 0.0001. The parameters for running
programs were the same as used in the first experiment,
for a fair comparison. The available software BEAM was
not able to handle this dataset. The performances of
SNPHarvester, generic ACO and AntEpiSeeker were
compared in terms of true positive rates and false discov-
ery rates, as summarized in Table 2. The results suggest
that AntEpiSeeker significantly outperforms other meth-
ods on this large scale dataset.

Results on WTCCC RA data
AntEpiSeeker was used to perform a large-scale associa-
tion study on the rheumatoid arthritis(RA) data from the
Wellcome Trust Case Control Consortium (WTCCC)
[26], which consisted of 332,831 SNP markers and 3,503
individuals (1,504 controls and 1,999 cases). Chromo-
somes were scanned separately first and then jointly. The
parameters for AntEpiSeeker were adjusted according to
the general rule presented in the section of parameter set-
ting. Different methods were also compared based on this

Table 2: Performance comparison of different methods on a simulated large-scale dataset.

Methods True positive rate False discovery rate

SNPHarvester 26.5% 98.6%

Generic ACO 0 100%

AntEpiSeeker 66.7% 97.1%

AntEpiSeeker with minimized false 
positives

52.3% 18.8%

Table 1: False positive rate of different methods on a null simulation.

False positive rate

AntEpiSeeker

P value 
threshold

Exhaustive 
search

BEAM SNPHarvester Before 
minimizing false 

positives

After minimizing 
false positives

10-5 5.5 × 10-6 No positives 
reported

1.4 × 10-2 3.5 × 10-6 3.0 × 10-6

10-4 5.3 × 10-5 No positives 
reported

1.6 × 10-2 3.0 × 10-5 1.1 × 10-5

10-3 6.9 × 10-4 No positives 
reported

2.0 × 10-2 2.9 × 10-4 3.7 × 10-5

10-2 8.4 × 10-3 No positives 
reported

2.4 × 10-2 2.0 × 10-3 6.6 × 10-5
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real dataset. The available software BEAM was not able
to handle such a big dataset. Compared with SNPHar-
vester, AntEpiSeeker identified more SNP markers, which
were previously identified as having remarkable marginal
effects [26-28], as being involved in epistatic interactions.
We summarized these epistatic interactions in Table 3.
Other epistatic interactions suggested by AntEpiSeeker
were posted on our project web site at http://
nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html.
It took about 5 days for AntEpiSeeker to handle the
WTCCC RA data, based on Dual Core AMD
Opteron(tm) Processor 275, while SNPHarvester took
about 2 weeks to handle it, a similar time to the one
reported in [12].

Conclusion
In this paper, we proposed a novel tool (AntEpiSeeker)
for the discovery of epistatic interactions in large scale
case-control studies. AntEpiSeeker was assessed through
comparison with two recent approaches on both simu-
lated and real datasets. AntEpiSeeker, which adopts a
two-stage optimization procedure, is a modified algo-
rithm derived from the generic ACO. To demonstrate the
advantages of the two-stage optimization, we also com-
pared the performance of AntEpiSeeker with that of the
generic ACO. AntEpiSeeker is a continuous research
project and may be upgraded in the future.
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