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Abstract
Background: Mammalian evolution is characterized by a progressive expansion of the surface area of the cerebral 
cortex, an increase that is accompanied by gyration of the cortical surface. The mechanisms controlling this gyration 
process are not well characterized but mutational analyses indicate that genes involved in neuronal migration play an 
important function. Due to the lack of gyration of the rodent brain it is important to establish alternative models to 
examine brain development during the gyration process. The pig brain is gyrated and accordingly is a candidate 
alternative model.

Findings: In this study we have identified genes differentially expressed in the pig cerebral cortex before and after 
appearance of gyration. Pig cortical tissue from two time points in development representing a non-folded, 
lissencephalic, brain (embryonic day 60) and primary-folded, gyrencephalic, brain (embryonic day 80) were examined 
by whole genome expression microarray studies. 91 differentially expressed transcripts (fold change >3) were 
identified. 84 transcripts were annotated and encoding proteins involved in for example neuronal migration, calcium 
binding, and cytoskeletal structuring. Quantitative real-time PCR was used to confirm the regulation of a subset of the 
identified genes.

Conclusion: This study provides identification of genes which are differentially expressed in the pig cerebral cortex 
before and after appearance of brain gyration. The identified genes include novel candidate genes which could have 
functional importance for brain development.

Findings
The complex architecture of the mammalian cerebral
cortex is a consequence of the highly organized move-
ment of neuronal cells. All neurons populating the six lay-
ered cerebral cortex undergo mitosis in distant
compartments and achieve their final position following
migration [1]. This migration is coordinated to obtain
specific laminar position, orientation, and connections
with other neurons. The number of neurons is dramati-
cally increased throughout mammalian evolution but the
expansion in the radial direction is relative limited, and
the thickness of the cortex is relative constant [1,2]. The
main expansion is observed in the tangential direction
which is the most variable and distinctive part of the cen-

tral nervous system [3]. The proliferative zones lining the
ventricular surface generate the neurons that migrate to
their proper position guided by scaffolds formed by the
transient extended fibers of the radial glial cells [4]. The
radial glia cells define a radial unit consisting of a relative
constant number of neurons in all mammalian species
investigated [1,5-7]. However, the number of radial units
is increased throughout mammalian evolution. This
increase in neuronal number is accomplished through
extension of the time of neurogensis and decreasing the
rate of neuronal death [3,8]. Furthermore, in higher
mammals the proliferative zones are expanded into struc-
tured subventricular zones (SVZs) enabling them to fur-
ther amplify the neuronal number [6,9,10]. The neuronal
output is increased through generation of intermediate
progenitor cells (IPC) that divide symmetrically in the
SVZ and generate either two neurons or two IPC and
thereby amplify the number of neurons [11,12].

* Correspondence: bork@ki.au.dk
1 Department of Human Genetics, University of Aarhus, The Bartholin Building, 
DK-8000 Aarhus C, Denmark
Full list of author information is available at the end of the article
BioMed Central
© 2010 Nielsen et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20444278
http://www.biomedcentral.com/


Nielsen et al. BMC Research Notes 2010, 3:127
http://www.biomedcentral.com/1756-0500/3/127

Page 2 of 9
The expansion of the mammalian brain during evolu-
tion is orchestrated with development of sulci and gyri,
the convoluted folds of the cerebral cortex [13]. The pro-
cess of cortical convolution is still poorly understood.
The remarkable similarity of the gyration patterns among
members within a species but with different patterns
between species indicates that the convolution is a highly
programmed process. Recent work suggested that the
sites of gyral and sulcal formation can be predicted from
the size of the SVZ [14]. The increase in primate SVZ
complexity can, however, not solely explain the evolution
of a gyrencephalic cortical surface since both lissenceph-
alic and gyrencephalic brain structures are represented in
diverse mammalian groups, including primates and
rodents [6,15]. Another hypothesis suggests that mechan-
ical forces exerted by axonal fibers are generating the
gyrencephalic cortical structure [16,17]. The axonal and
radial fibers attaching the growing cerebral cortex to the
centre of the developing brain represent elastic elements
in which the plasticity changes during elongation. Hence,
the strongly interconnected cortical regions are pulled
together resulting in gyri formation whereas weakly con-
nected regions drift apart generating sulci [17,18].

Mutations causing lissencephaly, smooth brain, are
identified in genes involved in neuronal migration sug-
gesting that this step in brain development indeed consti-
tutes a major determinant in establishment of the
convoluted structure of the cerebral cortex. The first
identified gene involved in human lissencephaly was
encoding for the β-subunit of platelet-activating factor
acetylhydrolase 1b, also known as lissencephaly 1 (LIS1)
[19]. Doublecortin (DCX) was identified as the gene
responsible for X-linked lissencephaly in males and sub-
cortical heterotopia in females [20]. Mutations in the
human Reelin gene are associated with recessive lissen-
cephaly with cerebellar hypoplasia [21]. Altogether a
large set of genetic data imply that cytoskeletal rearrange-
ments and neuronal migration are crucial to development
of gyrencephalic brains.

The pig brain as a model for mammalian brain gyration
To study the process of brain gyration the pig brain con-
stitutes an attractive alternative model to more classical
laboratory animals. The convolution of the pig brain is
occurring in the period between embryonic day E60 and
E80 of the 117 day gestation period and the relative devel-
opmental timing and the anatomical structure is compa-
rable to the primate brain (Nielsen et al. unpublished
results and Additional file 1). At the microscopic level the
process of neuronal migration shows a pronounced simi-
larity between primates and the pig and the neuronal pro-
liferating layers and number of migrating neurons are
more prominent at E60 compared to E80 (Nielsen et al.
unpublished results).

We questioned which genes are differentially expressed
between E60 and E80 and accordingly are candidate
genes to be involved in brain development during this
time frame. First we examined if a group of genes
described to be involved in human brain convolution
were differently expressed between E60 and E80 in pig
cortical tissue. mRNA was isolated and by quantitative
real-time PCR (qRT-PCR) the expression levels of such
genes were measured. In the analysis we examined the
expression of DCX, aristaless-related homeobox (ARX),
G protein coupled receptor 56 isoform A (GPR56), fil-
amin A gene (FLNA), Reelin, VLDLR, ApoER2, Dab1,
FYN, LIS1, nuclear distribution element-like (NDEL1),
and cyclin dependent kinase 5 (CDK5). For DCX, ARX,
GPR56, FLNA, VLDLR, Dab1, and NDEL1 we observed a
down-regulation of expression (Figure 1). LIS1 was the
only of the genes up-regulated (Figure 1). Reelin,
ApoER2, FYN, and CDK5 were not significantly up- or
down-regulated (Figure 1). Examining also later cortical
developmental time points supported the overall ten-
dency in regulation Additional file 2. From the qRT-PCR
expression analysis we conclude that some of the genes
involved in the brain convolution process have an altered
transcriptional activity during the timeframe in where
convolution appears.

Expression microarray analysis
For a comprehensive analysis of the differences in gene
expression profiles in the pig cerebral cortex between E60
and E80 we utilized the Affymetrix GeneChip® Pig
Genome Array. This array contains 24,123 probes includ-
ing 23,256 pig transcripts, which represents 20,201 pig
genes [22]. Cortical RNA isolated from three pig E60
embryos and three E80 embryos were used for the
microarray screening. Array data are available at Gene
Expression Omnibus [GEO:GSE18467]. The inter-chip
variance was small with a scale factor (SF) between 0.403
and 0.558 Additional file 3. The number of expressed
genes present on each chip was very similar, 66%, in
accordance with the number of genes hypothesised to be
active during brain development Additional file 3[23].
Genes consistently up-regulated or down-regulated on
the microarray triplets were further analysed. An arbi-
trary threshold was set at 3-fold before we classified a
gene for differently regulated. This high threshold was
selected to assure the minimization of background noise.
98 transcripts were found to be differential expressed by
this stringency (Table 1 and Table 2). Six transcripts were
represented more than once. Five transcripts were pres-
ent two times; Glial fibrillary acidic protein (GFAP), the
homeobox gene Meis1, megalencephalic leukoencephal-
opathy with subcortical cysts gene 1 (MLC1), Non-SMC
element 1 homolog (NSE1), and proteolipid protein 1
(PLP) and one transcript was present three times; DEAD-
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box protein 17 (DBX17). Hence the total number of iden-
tified differential expressed genes was 91. Of the six genes
represented multiple times on the microarray consistency
in up and down regulation was observed.

10 of the genes differentially expressed between the two
gestational time points were selected for qRT-PCR verifi-
cation. These genes were GFAP, apolipoprotein E (ApoE),
Calbindin 2, Neurofilament heavy chain (200 kDa), S100
calcium binding protein A1 (S100A1), Tubulin-alpha1

Figure 1 Expression analysis of genes involved in mammalian brain convolution. mRNA was extracted from pig cortical tissue from E60 and E80. 
qRT-PCR analysis were performed on cDNA for the genes DCX, ARX, GPR56, FLNA, Reelin, VLDLR, ApoER2, Dab1, FYN, LIS1, NDEL1, and CDK5. The ex-
pression levels were normalized to GAPDH, Beta-actin and 18S rRNA expression using the geNorm program [30].
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Table 1: Whole pig genome microarray results.

Target Description Public ID Fold Expression Level

Calcium binding

S100 calcium binding protein A1 (S100A1) [BX917468] 6,72 Brain 2-3

S100 calcium binding protein A14 (S100 A14) [CK451794] 5,81 NP

hippocalcin [BI341922] 3,40 Brain 1

calbindin 2 [BQ601075] 3,20 Brain 2

autotaxin [BX919892] 3,21 Brain 3

apolipoprotein E (APOE) [NM_214308.1] 3,12 Brain 3

secretory protein LOC348174 [CN069500] 3,00 Brain 4

Protocadherin 15 precursor [CO951943] -5,08 Brain 3

Cytoskeleton organization and biogenesis

tubulin, alpha 1 (TUBA1) [CO954570] 6,33 Brain 3

nesprin (SYNE1) [CD572116] 5,42 Brain 4

actinin, alpha 2 (ACTN2) [CF795401] 4,30 Brain 4

Glial fibrillary acidic protein (GFAP) [BF712769] 4,13 Brain 1

Glial fibrillary acidic protein (GFAP) [BX671201] 3,94 Brain 1

Neurofilament heavy polypepteide 200 kDa [CF180627] 3,74 Brain 3

h1-calponin [NM_213878.1] 3,35 Brain 4

Transcription regulation

Basic transcription element binding protein 1(BTEB1) [BG382637] 3,12 Brain 4

Homeobox protein Meis1 [CO941421] -3,18 Brain 4

Retinoic acid receptor RXR-gamma [CF181317] -3,20 Brain 4

Zinc finger protein IA-1(Insm1) [BQ603242] -3,82 Brain 2

KIT ligand (KITLG) [NM_214269.1] -3,92 Brain 3

Homeobox protein Meis1 [AW346968] -4,12 Brain 4

Zinc finger protein ZFPM2 [CN159819] -4,36 Brain 3

Transcription factor AP-2 gamma (AP2-gamma) [BG609515] -4,48 Brain 4

Jumonji domain containing protein 2C [BF712754] -6,68 Brain 4

Transcription factor AP-2 alpha (AP2-alpha) [AJ657914] -7,08 Brain 3

Signal transduction

n-chimaerin [CD572334] 13,67 Brain 2

ADP-ribosyl cyclase 1 [BP159691] 4,84 Brain 3*

Troponin C, slow skeletal and cardiac muscles (TN-C) [BG382598] 3,64 Brain 4

histamine receptor H1 [BF710024] 3,28 Brain 4

Lipid phosphate phosphohydrolase 1 (PAP2-alpha) [CF796129] 3,22 Brain 4

Frizzled 1 precursor (Frizzled-1) [AJ682600] -3,23 ?

proenkephalin [BI181438] -3,36 Brain 3

TGF-beta receptor type I precursor [AF317296.1] -3,57 Brain 4

Retinoic acid-binding protein II, cellular (CRABP-II) [CN160216] -3,67 Brain 4
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Central nervous system development

neurogranin [BX675498] 4,91 Brain 2

proteolipid protein 1 (PLP) [BQ601157] 4,87 Brain 2

proteolipid protein 1 (PLP) [BQ601666] 4,09 Brain 2

Myelin basic protein (MBP) [NM_001001546
.1]

4,08 Brain 3

carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8 [BF188991] 4,07 Brain 4

Enhancer-of-split and hairy-related protein 2 (SHARP-2) [CO993157] 3,18 Brain 4

Slit homolog 2 protein precursor (Slit-2) [BF712064] 3,06 Brain 4

protocadherin 18 (PCDH18) [CF368788] -3,21 Brain 3

Other genes

ribonuclease, RNase A family, 1 [BG894750] 11,44 ?

armadillo repeat containing, X-linked 1 (ARMCX1) [CK464699] 10,15 Brain 4

parkin isoform 1; parkin [CO994470] 9,12 Brain 4

major facilitator superfamily domain containing 4 [BE012554] 7,09 Brain 3

collagen, type XXI, alpha 1 (COL21A1) [BF440682] 7,08 Brain 3

Protein C20orf103 precursor [CF180509] 6,72 Brain 2

Sus scrofa arachidonate 12-lipoxygenase (ALOX15) [NM_213931.1] 6,05 Brain 4

phosphorylase, glycogen [CF365721] 5,90 Brain 4*

muscle glycogen phosphorylase [CF179951] 5,75 Brain 4*

coagulation factor V [NM_214120.1] 4,57 Brain 4

Atrophin-1 interacting protein 1 [CO949606] 4,51 Brain 1

prominin 1 [CN163054] 4,41 Brain 3

dendrin (DDN) [CF179783] 4,26 Brain 2-3

CUB and sushi multiple domains protein 2 [BI183640] 4,21 Brain 4

Pleckstrin and Sec7 domain containing protein 3 (Cytohesin) [CN157336] 4,05 Brain 4

Probable serine protease HTRA4 precursor [CK450639] 3,78 Brain 4*

Ras associated [BI181239] 3,73 ?

Membrane protein MLC1 [CF368389] 3,53 Brain 2

Tetratricopeptide repeat protein 7B [BQ600843] 3,43 Brain 3

T cell receptor [AB079532.1] 3,43 ?

Aquaporin 1(AQP-1) [CF792401] 3,40 Brain 3

Claudin-1 [BF188991] 3,38 Brain 4

Membrane protein MLC1 [AW478160] 3,34 Brain 2-3

Potential carboxypeptidase-like protein X2 precursor [BQ604567] 3,30 Brain 4

retinaldehyde binding protein 1 [BX917253] 3,28 Brain 4

fibronectin type III domain containing 1(FSD1) [CF366197] 3,26 Brain 1-2

syntaxin binding protein 5 (tomosyn) [AJ666521] 3,25 Brain 4

hypothetical protein FLJ21127 [CN070291] 3,14 Brain 4

T-cell receptor beta chain C region [AB079530.1] 3,05 ?

Zinc transporter 3 (ZnT-3) [BI346660] 3,03 Brain 3

NYD-SP14 protein [BI404541] 3,01 Brain 4

Collagen alpha 3(IV) chain precursor [BX918155] 3,00 Brain 4

KIAA1333 [BF703163] -3,00 Brain 4

Table 1: Whole pig genome microarray results. (Continued)
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(TUBA1), Neurogranin, Actinin-alpha2 (ACTN2), N-chi-
maerin (CHN1), and DBX17 (Figure 2). For all the exam-
ined genes we observed the same tendency in regulation
by the qRT-PCR analysis and the microarray analysis but
the differences in fold regulation were not equal illustrat-
ing the use of two fundamental different detection
approaches (see also Additional file 4). However, we con-
clude that an overall consistency exists between the
microarray and qRT-PCR data.

The degree of annotation made available by Affymetrix
covers only about 10% of the genes represented on the
chip. Further annotations were accomplished through
comparing the Affymetrix pig target sequences by
BLAST against the Ensembl human cDNA sequence
database or retrieved from the annotation list by Tsai et
al., 2006 [24]. Of the identified 91 differently expressed

transcripts 84 could be annotated by this method (Table
1). We note that among the annotated genes were for
example TUBA1 and MLC1, both directly correlated with
brain abnormalities in humans suffering of lissencephaly
and macrocephaly, respectively [25-29]. Seven transcripts
could not be annotated [GenBank: CO986932; BI402064;
BF712758; CN155998; AU060035; CF367810; BF712467]
(Table 2). Gene ontology (GO) http://www.geneontol-
ogy.org annotations were determined for each individual
transcript. GO terms covers the consistent descriptions
of gene represented in different databases including bio-
logical processes, cellular components in which they
exist, and the molecular functions they perform. The
majority of the identified differentially regulated genes
are highly expressed in the brain. Using biological process
annotations, the genes differential expressed between

Huntingtin-interacting protein 14 [BQ603863] -3,02 Brain 4

vitelline membrane outer layer 1 homolog [CF368035] -3,03 ?

Epithelial V-like antigen 1 precursor [CF787898] -3,12 ?

Similar to insulin-like growth factor binding protein [BQ599569] -3,17 Brain 4

Probable RNA-dependent helicase p72 (DEAD-box protein 17) [CF360658] -3,21 Brain 4

Decorin precursor (Bone proteoglycan II) (PG-S2) [BI182181] -3,23 ?

Epoxide hydrolase 1 (Microsomal epoxide hydrolase) [CF364362] -3,31 Brain 3

metallophosphoesterase 1 (MPPE1) [CO954514] -3,39 Brain 3-4

NSE1 [AJ659310] -3,46 Brain 3

NSE1 [AJ657499] -3,52 Brain 3

serine/threonine protein kinase TAO1 homolog; STE20-like kinase [BX676366] -3,63 Brain 4

dopamine receptor D2 [BF712306] -3,68 Brain 4

Collagen alpha 1(I) chain precursor [AF201723.1] -3,84 ?

Endothelial lipase precursor (EDL) [BX915625] -7,23 NP

Probable RNA-dependent helicase p72 (DEAD-box protein 17) [BX668358] -7,37 Brain 4

Probable RNA-dependent helicase p72 (DEAD-box protein 17) [CO991338] -10,71 Brain 4

Result of microarray analysis of differentially expressed genes with annotation in E60 and E80 cortex.

Table 1: Whole pig genome microarray results. (Continued)

Table 2: Unannotated genes.

Transcript code Public ID Fold

Ssc.30169.1 [GenBank:CO986932] 4,01

Ssc.9938.1 [GenBank:BI402064] 3,81

Ssc.8325.1 [GenBank:BF712758] 3,75

Ssc.4142.1 [GenBank:CN155998] 3,07

Ssc.19138.2 [GenBank:AU060035] -3,35

Ssc.19138.1 [GenBank:CF367810] -3,89

Ssc.7399.1 [GenBank:BF712467] -4,65

Result of microarray analysis of differentially expressed genes without annotation in E60 and E80 cortex. Transcript codes refer to the 
Affymetrix oligos spotted on the microarray [22]. The corresponding GenBank accession numbers are indicated along with the fold change 
in expression between E60 and E80.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CO986932
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BI402064
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF712758
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN155998
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AU060035
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CF367810
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF712467
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CO986932
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BI402064
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF712758
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CN155998
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AU060035
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CF367810
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF712467
http://www.geneontology.org
http://www.geneontology.org
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E60 and E80 could be classified into groups according to
calcium binding, cytoskeleton organization and biogene-
sis, transcription activation, signal transduction, and
CNS development. A subset of the genes could not be
placed in any of these functional groups.

Conclusions
The aim of this study was to identify genes which are dif-
ferentially expressed during the time of gyration of the
pig cerebral cortex. It is important to notice that by
screening these two time points we are not screening for

Figure 2 Verification of microarray data with qRT-PCR. Nine genes differently expressed from the microarray analysis were examined for the ex-
pression level using mRNA extracted from pig cortical tissue from E60 and E80. qRT-PCR analysis were performed on cDNA for the genes GFAP, ApoE, 
calbindin-2, Neurofilament (200 kDa), S100A1, TUBA1, Neurogranin, ACTN2, CHN1, and Dbx17. The expression levels were normalized to GAPDH, Beta-
actin and 18S rRNA expression using the geNorm program [30].
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genes specifically involved in brain gyration but for genes
those expression is changed during the developmental
and differentiation processes occurring in the time frame
before and after appearance of brain gyration. We have
identified for us a surprisingly low number of genes to be
differently expressed between the examined embryonic
time points supporting that the majority of the cortical
cells have not undergone specific differentiation pro-
cesses at E80 compared to E60. In this line it is important
to state that neuronal migration is evident both at E60
and E80, but decreased at the latter time point. We have
identified several differentially expressed genes that are
described to be functional involved in neuronal migra-
tion, apoptosis, angiogenesis, myelination, and brain
gyration but also a number of genes not characterised for
such functions and which accordingly could be interest-
ing new candidate genes. Further analysis will be required
to determine the function of these genes during brain
development.
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